We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept

Our website is undergoing system upgrades from July 1 to July 5, 2022. Online ordering and order processing will be disrupted during this time. For urgent order inquiries, please email ordersUS@takarabio.com, however, orders requested during the system upgrade will not be processed until after July 5. We appreciate your patience.

Close
  •  Customer Login
  • Register
  •  Customer Login
  • Register

  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Close

  • ‹ Back to RNA-seq
  • Automation systems
  • Next-generation sequencing
    • Product line overview
    • Technical notes
    • Featured kits
    • Technology and application overviews
    • FAQs and tips
    • DNA-seq protocols
    • Bioinformatics resources
    • Newsletters
    • Webinars
    • Citations
    • Posters
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Real-time PCR
  • cDNA synthesis
SMART-Seq v4 product page SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
Brain cells Customer interview: unraveling the brain with SMART-Seq v4
Home › Learning centers › Next-generation sequencing › Technical notes › RNA-seq › Full-length single-cell library method comparison

Learning centers

  • Automation systems
    • SmartChip Real-Time PCR System introduction
      • High-throughput detection of SARS-CoV-2
      • SmartChip Real-Time PCR System overview
      • SmartChip Real-Time PCR System technical specifications
      • SmartChip Real-Time PCR System applications
        • Antibiotic resistance genes
          • Screening for antibiotic resistance genes in manure and sewage
          • Uncovering antibiotic resistance genes in soil, sediment, and sludge
          • Tracking down antibiotic resistance genes in hospitals
          • Identifying antibiotic resistance genes in water
        • mRNA, miRNA, and lncRNA as disease biomarkers
        • Pathogen detection in human samples and food
        • Genotyping using animal and blood samples
      • SmartChip Real-Time PCR System video resources
        • Webinar: detection of ARGs and SARS-CoV-2 in wastewater
        • Webinar: antibiotic resistance screening
        • SmartChip tutorials
    • ICELL8 introduction
      • ICELL8 technology overview
      • ICELL8 cx technical specifications
      • ICELL8 technical specifications (original system)
      • ICELL8 system vs plate-seq
      • Webinars
      • Technical notes
        • Enhancing biomarker discovery with SMART-Seq Pro kit and ICELL8 cx system
        • ICELL8 cx system target enrichment for fusions
        • ICELL8 cx system reagent formulation and dispense guidelines
        • Improved detection of gene fusions, SNPs, and alternative splicing
        • Full-length transcriptome analysis
        • High-throughput single-cell ATAC-seq
        • Protocol: High-throughput single-cell ATAC-Seq
        • Single-cell identification with CellSelect Software
        • Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs
        • Combined TCR profiling and 5’ DE in single cells
        • Automated, high-throughput TCR profiling
      • Sample preparation protocols
        • Basic cell preparation for the ICELL8 cx system
        • Protocol: Nuclei isolation from mammalian cells
        • Protocol: Mouse cardiomyocyte preparation
        • Isolate cells of any size
      • Video resources
      • Citations
      • Posters
      • System & software notices
    • Apollo library prep system introduction
      • Automated VeriSeq library preparation for PGS
      • Apollo library prep system citations
      • SMART-Seq v4 chemistry for the Apollo system
      • Apollo library prep system overview
      • Apollo system technical specifications
      • In-tip bead separation on the Apollo system
  • Next-generation sequencing
    • Product line overview
    • Technical notes
      • DNA-seq
        • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
        • Next-gen WGA method for CNV and SNV detection from single cells
        • Low-volume DNA shearing for ThruPLEX library prep
        • Low-input whole-exome sequencing
        • Cell-free nucleic acid sequencing
        • DNA-seq from FFPE samples
        • ThruPLEX HV data sheet
        • Improvements to ThruPLEX HV
        • ThruPLEX HV outperforms NEBNext Ultra II
        • Comparing ThruPLEX HV PLUS to Kapa and NEBNext
        • Low cell number ChIP-seq using ThruPLEX DNA-Seq
        • Accurate detection of low-frequency variants using molecular tags
      • Immune Profiling
        • TCRv2 kit validated for rhesus macaque samples
        • TCR repertoire profiling from mouse samples (bulk)
        • BCR repertoire profiling from mouse samples (bulk)
        • Improved TCR repertoire profiling from human samples (bulk)
        • TCR repertoire profiling from human samples (single cells)
        • BCR repertoire profiling from human samples (bulk)
      • RNA-seq
        • All-in-one cDNA synthesis and library prep from single cells
        • Automation-friendly, all-in-one cDNA synthesis and library prep
        • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
        • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
        • Full-length mRNA-seq for target capture
        • Stranded libraries from single cells
        • Stranded libraries from picogram-input total RNA (v3)
        • Stranded libraries from 100 pg-100 ng total RNA
        • Stranded libraries from 100 ng - 1 ug total RNA
        • Stranded libraries from FFPE inputs (v2)
        • Nonstranded libraries from FFPE inputs
        • Cogent NGS Analysis Pipeline
          • Cogent NGS Analysis Pipeline notices
        • Cogent NGS Discovery Software
          • Cogent NGS Discovery Software notices
        • SMART-Seq DE3 Demultiplexer
      • Epigenetic sequencing
        • ChIP-seq libraries for transcription factor analysis
        • ChIP-seq libraries from ssDNA
        • Full-length small RNA libraries
        • Methylated DNA-seq with MBD2
    • Featured kits
    • Technology and application overviews
      • SMART technology
      • Single-cell mRNA-seq
      • Total RNA-seq
      • Biomarker discovery with RNA-seq
      • SMART-Seq PLUS solutions
      • Whole genome amplification from single cells
      • Sequencing depth for ThruPLEX Tag-seq
    • FAQs and tips
      • RNA-seq FAQs
      • RNA-seq tips
      • Positive and negative controls in scRNA-seq
      • DNA-seq FAQs
      • ChIP-seq FAQs
      • Indexing FAQs
      • TCR-seq methods: Q&A
      • STORM-seq Q&A
      • Pushing the limits Q&A
      • Liver metabolic function Q&A
      • Neural multiomics Q&A
    • DNA-seq protocols
      • Using UMIs with ThruPLEX Tag-Seq HV
      • Exome capture with Illumina Nextera Rapid Capture
      • Targeted capture with Roche NimbleGen SeqCap EZ
      • Targeted capture with IDT xGen panels
      • Targeted capture with Agilent SureSelectXT
      • Targeted capture with Agilent SureSelectXT2
      • Targeted capture with Agilent SureSelectQXT
      • Plasma preparation for ThruPLEX Plasma-Seq workflow
    • Bioinformatics resources
      • Cogent NGS Immune Profiler Software
        • Cogent NGS Immune Profiler Software notices
        • Cogent NGS Immune Profiler Software videos
      • ICELL8 scTCR Analyzer
      • SMARTer Human scTCR Demultiplexer
    • Newsletters
      • 2021 H1 NGS newsletter
      • 2020 NGS newsletter
    • Webinars
      • Harnessing the power of full-length transcriptome analysis for biomarker discoveries
      • SMART-Seq Pro kits for biomarker detection
      • Takara Bio Single-Cell Workshop, Spring 2021
      • Capturing biological complexity by high-resolution single-cell genomics
      • Sensitivity and scale for neuron multiomics
      • Taking single-cell RNA-seq by STORM
      • Pushing the limits of sensitivity for single-cell applications
      • Liver metabolic function, dissecting one cell at a time
      • Single-Cell Workshop at 2020 NextGen Omics Series UK
      • TCR-seq methods: when to use which
      • Immunogenomics to accelerate immunotherapy
      • Total RNA sequencing of liquid biopsies
      • MeD-Seq, a novel method to detect DNA methylation
      • Automating full-length single-cell RNA-seq libraries
      • Single-cell DNA-seq
      • Single-cell whole transcriptome analysis
    • Citations
      • Epigenetics citations
      • Microbiome citations
      • PicoPLEX citations
      • SMARTer RNA-seq citations
      • ThruPLEX DNA-seq citations
      • ThruPLEX Plasma-seq citations
    • Posters
  • Gene function
    • Gene editing
      • Gene editing product finder
      • Gene editing tools and information
        • sgRNA design tools
        • Tools for successful CRISPR/Cas9 genome editing
        • Gene editing posters
        • Customer data for Guide-it products
        • How to design sgRNA sequences
        • Introduction to the CRISPR/Cas9 system
        • Gene editing of CD3+ T cells and CD34+ HSCs
      • CRISPR/Cas9 knockouts
        • Mutation detection kit comparison
        • Screening for effective guide RNAs
        • Monoallelic versus biallelic mutants
        • Indel identification kit for mutation characterization
      • CRISPR/Cas9 knockins
        • Choosing an HDR template format
        • Homology-directed repair FAQs
        • Mouse CRISPR knockin protocol
        • Site-specific gene knockins using long ssDNA
        • Efficient CRISPR/Cas9-mediated knockins in iPS cells
        • Oligo design tool for detecting precise insertions
          • Oligo design tool user guide (insertions)
      • Genome-wide screening
        • CRISPR library screening
        • CRISPR library screening webinar
        • Phenotypic screen using sgRNA library system
      • Creating and screening for SNPs
        • SNP detection with knockin screening kit
        • Oligo design tool for SNP screening
          • Oligo design tool user guide (SNPs)
        • Sign up: SNP engineering webinar
        • Guide-it SNP Screening Kit FAQs
      • CRISPR/Cas9 delivery methods
        • Electroporation-grade Cas9 for editing in diverse cell types
        • CRISPR/Cas9 gene editing with AAV
        • CRISPR/Cas9 gesicles overview
        • Cas9 Gesicles—reduced off-target effects
        • sgRNA-Cas9 delivery to many cell types
        • Tet-inducible Cas9 for gene editing
      • Cre recombinase
        • Control your Cre recombinase experiments
        • Fast Cre delivery with gesicle technology
    • Viral transduction
      • Recombinant virus comparison
      • Product finder
      • Transduction posters
      • Lentivirus
        • Customizable SARS-CoV-2 pseudovirus
        • Lenti-X FAQs
        • Lentiviral workflow
        • Lentiviral products guide
        • Lentivirus biosafety
        • Lentiviral tips
        • Lentiviral vectors
        • Lenti-X packaging
        • High-throughput lentivirus production
        • Lenti-X Concentrator
        • Lentiviral titration
        • Lenti-X GoStix Plus video protocols
        • Lenti-X GoStix Plus FAQs
        • Rapid lentivirus titration by p24 ELISA
        • Lentiviral particles
        • Lentiviral particles—fluorescent
        • Lentiviral particles webinar
        • Lentiviral particles FAQs
      • Retrovirus
        • Retroviral products
        • Retro-X FAQs
        • Retro-X packaging
        • Retro-X Concentrator
      • Adeno-associated virus
        • AAV workflow
        • AAV products
        • AAV FAQs
        • AAV tech notes
          • Customer data: Purified AAV9 delivery (mouse brain)
          • Customer data: Purified AAV9 delivery (songbird brain)
          • Serotype-independent AAV vector purification
          • Customer data: Purified AAV2 delivery (mouse brain)
        • AAV videos
          • AAV2 purification video
          • AAVpro "All Serotypes" protocols
        • AAVpro Concentrator overview
      • Adenovirus
        • Adenoviral FAQs
        • Adenoviral products
        • Fastest, easiest adenoviral system ever
        • Tet-inducible adenovirus
        • Adenovirus purification kits
        • Adenovirus purification mega-scale
        • Adenovirus rapid titer
        • Adenoviral titration
    • T-cell transduction and culture
      • Technology overview
      • Adoptive T-cell therapy (ACT)
      • RetroNectin FAQs
      • Hematopoietic cell transduction
      • T-cell expansion
      • Serum-free T-cell culture
      • CultiLife culture bags protocol
      • Cytokine analysis
    • Inducible systems
      • iDimerize systems
        • Inducible protein-protein interactions—iDimerize systems
        • iDimerize systems journal club
        • iDimerize in vivo protocol
        • iDimerize systems citations
        • ARGENT cell signaling regulation kits from ARIAD
      • ProteoTuner systems
        • ProteoTuner technology overview
        • ProteoTuner citations
        • Inducible protein stabilization systems product selection guide
      • Tet-inducible systems
        • Tet systems product selection guide
        • Tet systems overview
        • Tet-One technology overview
        • Tet-On 3G plasmid system kit components
        • Tet-On 3G lentiviral system kit components
        • Tet system webinars
    • Transfection reagents
      • Xfect Transfection Reagent
      • Transfection tips
      • Cell lines transfected with the Xfect reagent
      • Protein transfection FAQs
      • Xfect RNA Transfection Reagent
      • Transfecting with single shots video
      • Single shots picture protocol
      • Transfection reagent products
      • Protocol: transfection of cerebellar slice cultures with Xfect reagent
      • Calcium phosphate transfection of neurons
    • Fluorescent proteins
      • Fluorescent protein vector finder
      • Fluorescent protein excitation and emission maxima
      • Fluorescent protein antibodies selection guide
      • Fluorescent protein antibody citations
        • GFP antibody citations
        • RFP antibody citations
      • Fluorescent protein quick guide
      • Fluorescent retroviral expression vectors
      • Verify miRNA expression
      • Find EGFP vector alternatives
    • Cell biology assays
      • Extracellular vesicle isolation
      • Technical notes
        • Extracellular vesicle isolation from biofluids
        • Cell viability and proliferation measurement
        • Exosome isolation from cell culture
      • FAQs
      • Citations
  • Stem cell research
    • Overview
      • Stem cell research products and services
      • Stem cell media products
      • Cardiomyocyte products
      • Hepatocyte products and services
      • iPS cell to hepatocyte differentiation overview
      • Cellartis human pluripotent stem cell services
    • Protocols
      • Hepatocytes
        • Video protocols for hiPS-HEP v2 cells
        • Getting started with hepatocyte differentiation
      • Pluripotent stem cells
        • Transferring iPSCs on MEFs to DEF-CS
        • Transferring iPSCs from other media to DEF-CS
        • Spin embryoid body formation
        • Reprogramming PBMCs
        • Reprogramming fibroblasts
      • Cardiomyocytes
        • Cardiomyocytes in FLIPR 384-well plate format
        • Cardiomyocytes on the Patchliner system
        • Cardiomyocytes on the Maestro MEA system
        • Cardiomyocytes on the MED64 MEA system
        • Cardiomyocytes on the CardioExcyte 96 system
        • Cardiomyocytes on the xCELLigence RTCA CardioECR system
    • Applications
    • Technical notes
      • Pluripotent stem cells
        • Using the DEF-CS system to culture human iPS cells
        • Comparison of the Cellartis DEF-CS system with other vendors' human iPS cell culture systems
        • Reprogramming PBMCs
        • Reprogramming fibroblasts
      • Gene editing in hiPS cells
        • Tagging an endogenous gene with AcGFP1 in hiPS cells
        • Tagging an endogenous gene with a myc tag in hiPS cells
        • Generating clonal hiPS cell lines deficient in CD81
        • Introducing a tyrosinemia-related SNP in hiPS cells
        • Inserting an expression cassette into the AAVS1 locus in hiPS cells
        • Editing hiPS cells using electroporation
        • Editing hiPS cells using gesicle technology
        • Single-cell cloning of hiPS cells
      • Organoids
        • Liver organoid differentiation from iPSCs for prediction of drug-induced liver injury
        • Generation of embryonic organoids using NDiff 227 neural differentiation medium
      • Beta cells
        • Beta cells for disease modeling
      • Hepatocytes
        • hiPS-HEP cells for disease modeling
        • hiPS-HEP cells for drug metabolism studies
        • Power medium for long-term human primary hepatocyte culture
        • iPS cell to hepatocyte differentiation system
      • Cardiomyocytes
        • Making engineered heart tissue with cardiomyocytes
      • Neural stem cells
        • RHB-A neural stem cell medium
    • Posters
    • Webinars
      • Using hiPS gene editing to create a tyrosinemia disease model
    • Videos
      • Hepatocyte offerings
    • FAQs
      • Cellartis DEF-CS 500 Culture System FAQs
      • Cellartis enhanced hiPS-HEP FAQs
      • Cellartis iPS Cell to Hepatocyte Differentiation System FAQs
    • Citations
      • Cellartis MSC Xeno-Free Culture Medium
      • Cellartis Power Primary HEP Medium
      • Cellartis DEF-CS 500 Culture System
      • Cellartis Enhanced hiPS-HEP cells
      • Cellartis hES-MP 002.5
      • Cellartis hPS cell-derived cardiomyocytes
      • Cellartis iPS Cell to Hepatocyte Differentiation System
      • GS1-R
      • 2i mES/iPSC medium
      • iMatrix-511
      • 3i mES/iPSC medium
      • NDiff 227
      • NDiff N2
      • RHB-A
      • STEM101
      • STEM121
      • STEM123
    • Selection guides
      • Stem cell antibody selection guide
      • Stem cell media product finder
      • Stem cell tools product finder
      • Hepatocyte product finder
  • Protein research
    • Capturem technology
      • Capturem protocols
      • Capturem tech notes and applications
      • FAQs about Capturem technology
      • Capturem technology citations
      • Capturem posters
    • Antibody purification and immunoprecipitation
      • IP and Co-IP of cardiac voltage-gated ion channel proteins
      • Tech note: Rapid Protein G-based antibody purification
      • Tech note: thiophilic antibody purification resins
      • Antibody purification and screening with Capturem Protein A
      • Tech note: IP and Co-IP
      • Rapid antibody labeling with Capturem technology
    • His-tag purification
      • Purification methods overview
      • TALON resin selection guide
      • Selection guide: His60 resin
      • xTractor Buffer is optimized for superior protein yield
      • Why tag a protein?
      • Tech note: cobalt resin
      • Simplified purification of active, secreted his-tagged proteins
      • Overview: His60
      • Tech note: Capturem technology
      • Tech note: Capturem large volume
      • Magnetic beads
      • FAQs: TALON
      • Protocols
        • Video: Capturem his maxiprep
        • Video: Capturem his miniprep
        • Visual protocol: Capturem his maxiprep
        • Visual protocol: Capturem his miniprep
        • Capturem nickel column reagent compatibility
        • TALON reagent compatibility
        • His60 reagent compatibility
        • TALON: Native vs denaturing purification
        • Protocol: denaturing purification with TALON resin, imidazole elution
        • Protocol: native purification with TALON resin, imidazole elution
        • Protocol: native purification with TALON resin, pH elution
    • Other tag purification
      • Streptavidin-based enrichment using Capturem technology
      • Selection guide: peptide tags
      • Myc-tagged protein purification overview
      • GST-tagged protein purification overview
    • Phosphoprotein and glycoprotein purification
      • Non-tagged protein purification overview
      • Phosphoprotein purification overview
    • Mass spectrometry digestion reagents
      • Capturem technology for trypsin protein digestion
      • Protein and whole-cell lysate digestion with Capturem Trypsin technology
      • Protein digestion with Capturem Pepsin
    • Matchmaker Gold yeast two-hybrid systems
      • Matchmaker Gold Yeast Two-Hybrid System
      • Make your own library for yeast two-hybrid screening
      • Mate and Plate yeast two-hybrid cDNA libraries
      • Aureobasidin A for improved selectable drug resistance in yeast
    • Expression systems
      • Protein expression overview
      • Insect expression overview
      • Mammalian expression overview
      • pHEK293 Ultra expression overview
      • OKT3 expression in mammalian cells
      • Bacterial expression overview
  • PCR
    • Citations
      • PrimeSTAR HS
      • EmeraldAmp MAX
      • Terra PCR Direct
      • EmeraldAmp GT
      • Takara Ex Taq
      • PrimeSTAR Max
      • PrimeSTAR GXL
      • Takara LA Taq
      • SpeedSTAR HS
      • Takara Taq and Taq HS
      • Titanium Taq
    • Selection guides
      • PCR selection guide
      • Direct PCR selection guide
      • Fast PCR selection guide
    • PCR enzyme brochure
    • Technical notes
      • Rapid, high-performance multiplex PCR
      • EmeraldAmp outperforms MyTaq Red mix
      • Fast and accurate PCR
      • Methylation studies
      • Hot-start PCR
      • Long-range PCR with LA Taq
      • Direct PCR from human nail
      • Direct PCR from meat samples
      • Megaprimer PCR with PrimeSTAR GXL
      • Amplifying GC-rich templates
      • Titanium Taq for high-throughput genotyping
      • Colony PCR in under an hour
      • High-throughput endpoint PCR
      • Direct PCR from blood
      • PrimeSTAR GXL for targeted sequencing
      • Detecting somatic mosaicism using massively parallel sequencing
    • FAQ
      • Primer design
      • Optimization
      • Troubleshooting
      • Applications and conditions
      • Shipping, storage, and handling
    • Go green with lyophilized enzymes
  • Cloning
    • In-Fusion Cloning general information
      • In-Fusion Cloning overview
      • In-Fusion Cloning guide
      • In-Fusion Cloning and competition
        • In-Fusion Snap Assembly vs. GeneArt Gibson Assembly HiFi
        • Higher cloning efficiency using In-Fusion Snap Assembly
        • Sequence accuracy in seamless cloning
        • Choosing a seamless cloning method
        • Improving background over Gibson Assembly
        • A successful alternative to ligation cloning
        • Single- and multiple-insert cloning
        • Easy cloning into lentiviral vectors
        • Outperforming TOPO cloning
      • In-Fusion Cloning citations
      • Stellar Competent Cells product overview and performance data
      • EcoDry reagents and sustainability
    • Primer design and other tools
      • Seamless cloning primer design
      • In-Fusion Cloning tutorials
        • Cloning one or more fragments
        • Deleting a sequence
        • Inserting a sequence
        • Deleting and replacing a sequence
      • In-Fusion molar ratio calculator
      • Simulate your construct
    • In‑Fusion Cloning tips and FAQs
    • Applications and technical notes
      • In-Fusion Cloning applications collection
      • Efficient multiple-fragment cloning
      • Mutagenesis with In-Fusion Cloning
      • Rapid, high-throughput cloning for antibody development
      • Solve a synthesis challenge with easy multiple-insert cloning
      • Direct cloning into large vectors
      • Simplified insertion of a GFP-encoding cassette into a 100-kb plasmid
      • Efficient cloning for sgRNA/Cas9 plasmids
      • In-Fusion Cloning of sgRNAs
      • De novo insertion of small fusion protein tags
    • Sign up to stay updated
    • Traditional molecular cloning
      • Restriction enzyme overview
        • General information about restriction enzymes
        • Star activity of restriction enzymes
        • Inactivation of restriction enzymes
        • Buffer activity with restriction enzymes
        • Universal buffers for double digestion with restriction enzymes
        • Restriction enzymes affected by methylation
        • Methylation-sensitive restriction enzymes
        • QC of restriction enzymes
      • Ligation cloning overview
      • Ligation product guide
  • Nucleic acid purification
    • Nucleic acid extraction webinars
    • Product demonstration videos
    • Product finder
    • Plasmid kit selection guide
    • Plasmid purification
      • NucleoSpin Plasmid Transfection-grade
      • NucleoSnap Plasmid Midi
      • NucleoBond Xtra Midi/Maxi
    • Genomic DNA purification
      • Tissue
        • NucleoSpin Tissue
        • NucleoSpin DNA RapidLyse
        • NucleoSpin Tissue XS
        • NucleoMag DNA Swab
        • NucleoBond HMW DNA
        • NucleoSpin DNA Lipid Tissue
      • FFPE
        • NucleoMag DNA FFPE
        • NucleoSpin 96 DNA FFPE
      • Blood and plasma
        • NucleoMag Blood
        • NucleoSnap cfDNA
        • NucleoSpin cfDNA XS
        • NucleoMag cfDNA
        • NucleoSpin cfDNA Midi
      • Plant
        • NucleoMag 384 Plant
        • NucleoSpin Plant II
      • Other organisms and samples
        • NucleoMag VET
        • NucleoMag DNA Bacteria
        • NucleoMag DNA Food
        • NucleoSpin DNA Insect
        • NucleoSpin Microbial DNA
    • DNA/RNA cleanup and extraction
      • NucleoSpin Gel and PCR XS product overview
      • NucleoSpin Gel and PCR Clean-up
      • NucleoMag NGS Clean-up and Size Select
      • NucleoSpin RNA Clean-up
    • RNA purification
      • RNA purification overview
      • NucleoSpin RNA Plus
      • NucleoSpin RNA Plus XS
      • NucleoSpin RNA
      • NucleoProtect RNA
      • NucleoSpin miRNA
      • NucleoSpin RNA Blood
      • NucleoSpin miRNA Plasma
      • NucleoZOL for RNA isolation
      • High-throughput RNA isolation from FFPE samples
      • NucleoSpin RNA Plant and Fungi
    • RNA purification kit finder
    • Viral DNA and RNA purification
      • NucleoMag Virus
      • NucleoMag Pathogen
    • Parallel DNA, RNA & protein
      • NucleoSpin RNA/Protein
      • NucleoSpin TriPrep
    • Automated DNA and RNA purification
      • Application notes, by sample type
        • Plasmid purification
        • DNA cleanup
        • DNA from cells and tissues
        • RNA from cells and tissues
        • DNA from blood and bodily fluids
        • DNA and RNA from plants, fungi, and food
        • Viral RNA and DNA purification
      • Application notes, by platform
        • Eppendorf
        • Tecan
        • Hamilton
        • Thermo Fisher Scientific
        • MASMEC Biomed
    • Accessory selection guides
      • Sample homogenization beads
      • NucleoBond racks selection guide
    • Microbiome
      • NucleoMag DNA Microbiome
      • NucleoSpin Soil
      • NucleoSpin 8/96 Soil
      • NucleoSpin DNA Stool
      • NucleoSpin 96 DNA Stool
      • NucleoMag DNA/RNA Water
      • NucleoSpin eDNA Water
      • NucleoBond RNA Soil
      • NucleoSpin RNA Stool
  • Antibodies and ELISA
    • Osteocalcin focus
  • Real-time PCR
    • Overview
      • One-step RT-qPCR kits
      • Two-step RT-qPCR kits
      • Probe-based qPCR kits
      • TB Green-based qPCR kits
      • Videos: qPCR analysis for challenging inputs
      • qRT-PCR to detect RNA present at low levels
    • Product finder
    • Reaction size guidelines
    • Real-time PCR products brochure
    • Real-time PCR tutorial videos
    • Guest webinar: extraction-free SARS-CoV-2 detection
    • Guest webinar: developing and validating molecular diagnostic tests
    • Technical notes
      • Unbiased preamplification of limited samples
      • Accurate gene expression analysis with TB Green Premix Ex Taq II
      • Efficient quantification of human gene expression with PrimeScript Reverse Transcriptase
      • Rapid qPCR analysis from blood samples using PrimeScript Reverse Transcriptase
      • Monitoring siRNA knockdown
      • qPCR without optimization using TB Green Premix Ex Taq
      • Fast synthesis of cDNA templates for real-time RT-PCR
      • Specific, consistent real-time PCR with TB Green Premix Ex Taq II
      • Mir-X microRNA quantification
    • FAQs
  • cDNA synthesis
    • Premium total and poly A+ RNA
    • SMARTer RACE 5'/3' Kit
    • Cloning antibody variable regions
New products
Need help?
Contact Sales
SMART-Seq v4 product page SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
Brain cells Customer interview: unraveling the brain with SMART-Seq v4
Tech Note

Improving the sensitivity of ultra-low input mRNA-seq


  • Powered by SMART and LNA technologies:
    Locked nucleic acid technology significantly improves template switching and sensitivity
  • Higher sensitivity and improved mapping to the genome:
    Better sequencing metrics than SMARTer Ultra low v3 and SMART-Seq2
  • Reproducible results across input amounts:
    Excellent sequencing libraries are produced across a 10 pg–10 ng input range
Introduction Results Conclusions Methods References

Introduction  

Good science is continuously looking for ways to improve the quality of data produced from precious samples. With this goal of constant improvement in mind, we have created the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing, the highest sensitivity single-cell mRNA-seq kit we have ever released. This kit has higher mapping to the genome, identifies more genes, and has better reproducibility than the SMART-Seq2 method or to any of the previous generations of SMARTer Ultra low kits (SMARTer Ultra Low Input RNA Kit for Sequencing - v3).

For our previous ultra-low input mRNA-seq kit, we streamlined the protocol by removing a purification step, resulting in higher yield, and introduced a polymerase (SeqAmp DNA polymerase) better able to amplify GC-rich targets, increasing the representation of these transcripts. With the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing we further improved sensitivity by incorporating and improving upon the SMART-Seq2 method from Rickard Sandberg's lab at Ludwig Cancer Research (Picelli et al. 2013). This new kit uses the SMARTScribe Reverse Transcriptase (RT), which is already optimized for template switching. The inclusion of locked nucleic acid (LNA) technology, from the SMART-Seq2 method, as part of the template-switching SMART-Seq v4 oligo likely stabilizes the interaction between the oligo and non-templated nucleotides added by the RT. Add to that our long history of optimizing template-switching technology, and you get the high yield and extreme sensitivity of this new kit. By building on our extensive experience with single-cell mRNA-seq, the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing allows researchers to capture transcriptome data with the highest confidence.

Results  

Significant improvements in data over previous methods

RNA-seq libraries generated using the SMART-Seq v4 kit outperform those made with either the SMARTer ultra-low v3 kit or the SMART-Seq2 method. The cDNA library yield from the SMART-Seq v4 kit is consistently higher compared to the other two methods. A higher percentage of reads from the SMART-Seq v4 kit map to the genome compared to the SMART-Seq2 method, showing that improvements in the SMART-Seq v4 kit decrease background. Finally, the SMART-Seq v4 kit has extremely high sensitivity; the SMART-Seq v4 libraries identify more transcripts than either the SMARTer Ultra low v3 kit or the SMART-Seq2 method.

Sequencing metrics comparing different cDNA synthesis protocols
RNA source 10 pg Mouse Brain Total RNA
cDNA synthesis SMARTer ultra-low v3 SMART-Seq v4 SMART-Seq2
Yield (ng) 4.7 6.0 10.6 11.2 12.6 8.1
Number of transcripts FPKM >0.1 11,647 10,885 14,731 14,813 12,080 12,039
FPKM >1 9,729 9,105 12,501 12,591 10,270 10,058
Percentage of reads (%):
Mapped to rRNA 0.8 0.4 6.5 6.1 6.9 3.8
Mapped to mitochondria 6.0 5.4 3.4 3.4 5.1 7.2
Mapped to genome 96 97 96 95 72 93
Mapped to exons 73 73 76 76 66 67
Mapped to introns 21 21 19 20 28 27
Mapped to intergenic regions 6.0 6.2 4.7 4.7 5.8 5.8



Higher sensitivity and better mappability with the SMART-Seq v4 kit

Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer ultra-low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries. RNA-seq libraries were generated using Nextera® XT DNA Library Preparation Kit and sequenced on an Illumina MiSeq® instrument. Sequences were analyzed as described in the Methods.

Improved reproducibility for genes with low expression

SMARTer Ultra low kits and the SMART-Seq2 method are known to have good reproducibility, even at extremely low inputs, indicated by high Pearson correlations. The SMART-Seq v4 kit improves on this, in particular for transcripts with relatively lower expression levels. Across all expression levels (FPKMs; Fragments Per Kilobase Of Exon Per Million Fragments Mapped), the correlation between replicates (Pearson R) ranges between 0.911–0.972 for the different cDNA synthesis methods. However, when high-expression transcripts (FPKM >100) are removed, the SMART-Seq v4 kit has a much higher correlation between replicates (Pearson R = 0.739) compared to the SMARTer Ultra low v3 kit or the SMART-Seq2 method. Additionally, fewer higher-expression transcripts are found in only one replicate of libraries generated with the SMART-Seq v4 kit. For the SMARTer ultra low-v3 kit and SMART-Seq2 method, transcripts found only in one replicate have FPKMs of up to 364 or 236, respectively, while the highest FPKM of transcripts found in only one replicate is only 70 for the SMART-Seq v4 kit. This is consistent with the smaller variation across replicates and high reproducibility seen when using the SMART-Seq v4 kit.

Scatter plots showing the reproducibility of libraries generated with the SMARTer Ultra Low v3 kit, the SMART-Seq v4 kit, or the SMART-Seq2 method.

Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer U ltra low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer ultra-low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911-0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Consistent gene body coverage

One of the major advantages of using template switching and oligo(dT) priming for cDNA synthesis is that the final cDNA library is enriched for full-length transcripts. Ideally, this results in even coverage across the gene body (i.e., a similar number of reads across the entire transcript). The SMART-Seq v4 kit has a slight 5′ bias, but generally even gene body coverage, comparable to the SMART Ultra low v3 kit and SMART-Seq2 method.

The gene body coverage for replicate libraries generated with three different cDNA synthesis methods.

Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Excellent metrics across RNA input amount

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing produces libraries that identify a high number of transcripts, with very low percentages of reads mapping to rRNA, and high percentages mapping to the genome and exons. It has been optimized for ultra-low-input total RNA samples, thus generating high-quality, consistent sequencing metrics across an input range of 10 pg–10 ng or from 1–1,000 intact cells (data not shown).

Sequencing metrics comparing input RNA amounts
RNA source Human Brain Total RNA
Input amount 10 pg 100 pg 1 ng 10 ng
Yield (ng) 3.2 3.2 5.2 5.6 3.5 4.4 6.7 6.1
Number of transcripts FPKM >0.1 14,611 14,169 22,367 22,531 24,449 24,469 24,524 24,522
FPKM >1 11,627 11,227 16,460 16,600 17,218 17,119 17,383 17,333
Percentage of reads (%):
Mapped to rRNA 1.6 1.4 1.9 1.9 3.8 3.8 11.8 11.6
Mapped to mitochondria 8.7 9.0 8.7 9.0 9.5 9.4 9.6 9.3
Mapped to genome 93 94 95 96 95 95 94 95
Mapped to exons 76 77 76 76 75 75 73 73
Mapped to introns 19 19 19 19 20 20 22 22
Mapped to intergenic regions 4.7 4.4 4.6 4.7 4.8 4.8 5.2 5.1
Pearson R 0.96 0.99 1.00 1.00

 
Sequencing metrics are consistent across RNA input amounts.
 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10-pg, 100-pg, 1-ng, or 10-ng libraries, respectively. RNA-seq libraries were generated using the Nextera XT DNA Library Preparation Kit and sequenced on an Illumina MiSeq instrument. Sequences were analyzed as described in the Methods. 

Conclusions  

Good science incorporates and builds on new technologies in exciting ways. The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing builds on three previous generations of SMARTer Ultra low kits and exclusively incorporates the SMART-Seq2 method developed by Rickard Sandberg's lab to achieve a new level of sensitivity in single-cell RNA-seq. The improved template-switching oligonucleotide incorporates LNA technology, as well as other optimizations developed in-house, to increase the sensitivity and yield of this kit compared to previous generations of SMARTer Ultra low kits for mRNA-seq. This increase in sensitivity allows the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing to produce libraries that outperform both the SMART-Seq2 method and other SMARTer Ultra low kits for mRNA-seq. The streamlined workflow, high sensitivity, and excellent reproducibility make the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing the most advanced kit yet in our suite of best-in-class tools for next-gen sequencing.

Methods  

Comparison across methods:

cDNA libraries were prepared in duplicate from 10 pg Mouse Brain Total RNA using the SMARTer Ultra Low Input RNA Kit for Sequencing - v3, the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing, or the SMART-Seq2 method as described in the user manuals or Picelli et al., 2013. Illumina adapters and indexes were added using Nextera XT DNA Library Preparation Kit and 100 pg of cDNA input. Libraries were sequenced using an Illumina MiSeq instrument, generating 4.0 million paired-end reads (2 x 75 bp).

Comparison of different input amounts:

10 pg–10 ng of Human Brain Total RNA was used as input for the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing as described in the user manual. 100 pg of cDNA input was used as input for the Nextera XT DNA Library Preparation Kit to generate Illumina RNA-seq libraries. Libraries were sequenced using an Illumina MiSeq instrument, generating 3.1 million paired-end reads (2 x 75 bp).

Sequence analysis:

Reads from both Mouse and Human Brain Total RNA were trimmed by CLC Genomics Workbench and mapped to rRNA and the mitochondrial genome with CLC (% reads indicated). The unmapped reads were subsequently mapped with CLC to the human (hg19) or mouse (mm10) genome with RefSeq annotation. The number of reads that map to introns, exons, or intergenic regions is a percentage of the reads successfully mapped to RefSeq. The number of genes identified in each library was determined by the number of genes with an FPKM of at least 0.1. Scatter plots were generated with FPKM values from CLC mapping to the transcriptome. In order to identify the transcripts found in only one replicate, 0.001 was added to each value prior to graphing. Gene body coverage was determined using the geneBody_coverage.py module of RSeQC. Read coverage was normalized using Excel.

References  

Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–8 (2013).

Related products

Cat. # Product Size License Quantity Details
634888 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing 12 Rxns USD $1079.00

License Statement

ID Number  
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com.
*

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing generates high-quality cDNA from ultra-low amounts of total RNA or directly from multiple intact cells (<1,000 cells). This kit can accommodate an input volume of 10 μl and is regularly tested with 10 pg of total RNA. cDNA libraries generated by this kit have been tested for compatibility with Ion Torrent and Illumina sequencing platforms. This kit supports up to 12 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Reproducibility is high for low-input samples

Reproducibility is high for low-input samples
Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer Ultra Low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911–0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Back

Gene body coverage is good for all three library preparation methods

Gene body coverage is good for all three library preparation methods
Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra Low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Back

Higher sensitivity and better mappability with the SMART-Seq v4 kit

Higher sensitivity and better mappability with the SMART-Seq v4 kit
Higher sensitivity and better mappability with the SMART-Seq v4 kit. Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer Ultra Low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries.

Back

Sequencing metrics are consistent across RNA input amounts

Sequencing metrics are consistent across RNA input amounts
Sequencing metrics are consistent across RNA input amounts. 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10 pg, 100 pg, 1 ng, or 10 ng libraries, respectively.

Back

634888: SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing

634888: SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
634889 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing 24 Rxns USD $1864.00

License Statement

ID Number  
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com.
*

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing generates high-quality cDNA from ultra-low amounts of total RNA or directly from multiple intact cells (<1,000 cells). This kit can accommodate an input volume of 10 μl and is regularly tested with 10 pg of total RNA. cDNA libraries generated by this kit have been tested for compatibility with Ion Torrent and Illumina sequencing platforms. This kit supports up to 24 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Reproducibility is high for low-input samples

Reproducibility is high for low-input samples
Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer Ultra Low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911–0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Back

Gene body coverage is good for all three library preparation methods

Gene body coverage is good for all three library preparation methods
Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra Low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Back

Higher sensitivity and better mappability with the SMART-Seq v4 kit

Higher sensitivity and better mappability with the SMART-Seq v4 kit
Higher sensitivity and better mappability with the SMART-Seq v4 kit. Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer Ultra Low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries.

Back

Sequencing metrics are consistent across RNA input amounts

Sequencing metrics are consistent across RNA input amounts
Sequencing metrics are consistent across RNA input amounts. 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10 pg, 100 pg, 1 ng, or 10 ng libraries, respectively.

Back

634889: SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing

634889: SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
634890 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing 48 Rxns USD $2983.00

License Statement

ID Number  
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com.
*

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing generates high-quality cDNA from ultra-low amounts of total RNA or directly from multiple intact cells (<1,000 cells). This kit can accommodate an input volume of 10 μl and is regularly tested with 10 pg of total RNA. cDNA libraries generated by this kit have been tested for compatibility with Ion Torrent and Illumina sequencing platforms. This kit supports up to 48 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Reproducibility is high for low-input samples

Reproducibility is high for low-input samples
Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer Ultra Low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911–0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Back

Gene body coverage is good for all three library preparation methods

Gene body coverage is good for all three library preparation methods
Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra Low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Back

Higher sensitivity and better mappability with the SMART-Seq v4 kit

Higher sensitivity and better mappability with the SMART-Seq v4 kit
Higher sensitivity and better mappability with the SMART-Seq v4 kit. Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer Ultra Low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries.

Back

Sequencing metrics are consistent across RNA input amounts

Sequencing metrics are consistent across RNA input amounts
Sequencing metrics are consistent across RNA input amounts. 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10 pg, 100 pg, 1 ng, or 10 ng libraries, respectively.

Back

634890: SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing

634890: SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
634891 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing 96 Rxns USD $5368.00

License Statement

ID Number  
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com.
*

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing generates high-quality cDNA from ultra-low amounts of total RNA or directly from multiple intact cells (<1,000 cells). This kit can accommodate an input volume of 10 μl and is regularly tested with 10 pg of total RNA. cDNA libraries generated by this kit have been tested for compatibility with Ion Torrent and Illumina sequencing platforms. This kit supports up to 96 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Reproducibility is high for low-input samples

Reproducibility is high for low-input samples
Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer Ultra Low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911–0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Back

Gene body coverage is good for all three library preparation methods

Gene body coverage is good for all three library preparation methods
Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra Low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Back

Higher sensitivity and better mappability with the SMART-Seq v4 kit

Higher sensitivity and better mappability with the SMART-Seq v4 kit
Higher sensitivity and better mappability with the SMART-Seq v4 kit. Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer Ultra Low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries.

Back

Sequencing metrics are consistent across RNA input amounts

Sequencing metrics are consistent across RNA input amounts
Sequencing metrics are consistent across RNA input amounts. 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10 pg, 100 pg, 1 ng, or 10 ng libraries, respectively.
634892 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing 192 Rxns Inquire for Quotation

License Statement

ID Number  
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com.
*

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing generates high-quality cDNA from ultra-low amounts of total RNA or directly from multiple intact cells (<1,000 cells). This kit can accommodate an input volume of 10 μl and is regularly tested with 10 pg of total RNA. cDNA libraries generated by this kit have been tested for compatibility with Ion Torrent and Illumina sequencing platforms. This kit supports up to 192 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Reproducibility is high for low-input samples

Reproducibility is high for low-input samples
Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer Ultra Low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911–0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Back

Gene body coverage is good for all three library preparation methods

Gene body coverage is good for all three library preparation methods
Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra Low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Back

Higher sensitivity and better mappability with the SMART-Seq v4 kit

Higher sensitivity and better mappability with the SMART-Seq v4 kit
Higher sensitivity and better mappability with the SMART-Seq v4 kit. Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer Ultra Low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries.

Back

Sequencing metrics are consistent across RNA input amounts

Sequencing metrics are consistent across RNA input amounts
Sequencing metrics are consistent across RNA input amounts. 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10 pg, 100 pg, 1 ng, or 10 ng libraries, respectively.
634893 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing 480 Rxns Inquire for Quotation

License Statement

ID Number  
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com.
*

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing generates high-quality cDNA from ultra-low amounts of total RNA or directly from multiple intact cells (<1,000 cells). This kit can accommodate an input volume of 10 μl and is regularly tested with 10 pg of total RNA. cDNA libraries generated by this kit have been tested for compatibility with Ion Torrent and Illumina sequencing platforms. This kit supports up to 480 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Reproducibility is high for low-input samples

Reproducibility is high for low-input samples
Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer Ultra Low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911–0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Back

Gene body coverage is good for all three library preparation methods

Gene body coverage is good for all three library preparation methods
Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra Low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Back

Higher sensitivity and better mappability with the SMART-Seq v4 kit

Higher sensitivity and better mappability with the SMART-Seq v4 kit
Higher sensitivity and better mappability with the SMART-Seq v4 kit. Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer Ultra Low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries.

Back

Sequencing metrics are consistent across RNA input amounts

Sequencing metrics are consistent across RNA input amounts
Sequencing metrics are consistent across RNA input amounts. 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10 pg, 100 pg, 1 ng, or 10 ng libraries, respectively.
634894 SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing 960 Rxns Inquire for Quotation

License Statement

ID Number  
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com.
*

The SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing generates high-quality cDNA from ultra-low amounts of total RNA or directly from multiple intact cells (<1,000 cells). This kit can accommodate an input volume of 10 μl and is regularly tested with 10 pg of total RNA. cDNA libraries generated by this kit have been tested for compatibility with Ion Torrent and Illumina sequencing platforms. This kit supports up to 960 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Reproducibility is high for low-input samples

Reproducibility is high for low-input samples
Reproducibility is high for low-input samples. FPKMs from replicate libraries generated from 10 pg of Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method were compared. For transcripts with FPKM <100, the correlation between replicates was much higher for the SMART-Seq v4 kit (Pearson R = 0.739; Panel B) compared to the SMARTer Ultra Low v3 (Pearson R = 0.376; Panel A) or the SMART-Seq2 method (Pearson R = 0.496; Panel C). For all transcripts (shown in the scatterplots on the right) the correlation between replicates was high for each of the three methods (Pearson R between 0.911–0.972), though the SMART-Seq v4 kit did have the highest correlation. Transcripts represented in only one replicate can be seen along the X- and Y-axes of the scatter plots showing all transcripts.

Back

Gene body coverage is good for all three library preparation methods

Gene body coverage is good for all three library preparation methods
Gene body coverage is good for all three library preparation methods. Gene body coverage shown is the average of two replicate libraries prepared from 10 pg Mouse Brain Total RNA using the three different cDNA synthesis methods. The SMARTer Ultra Low v3 kit produced a slight 3′ bias, and the SMART-Seq v4 kit produced a slight 5′ bias; however, the overall coverage was fairly even.

Back

Higher sensitivity and better mappability with the SMART-Seq v4 kit

Higher sensitivity and better mappability with the SMART-Seq v4 kit
Higher sensitivity and better mappability with the SMART-Seq v4 kit. Replicate libraries were generated from 10 pg Mouse Brain Total RNA using the SMART-Seq v4 kit, the SMARTer Ultra Low v3 kit, or the SMART-Seq2 method. 18 PCR cycles were used to amplify cDNA libraries with the SMART-Seq2 method and SMARTer Ultra Low v3 kit; however, only 17 PCR cycles were needed for the SMART-Seq v4 libraries.

Back

Sequencing metrics are consistent across RNA input amounts

Sequencing metrics are consistent across RNA input amounts
Sequencing metrics are consistent across RNA input amounts. 10 pg–10 ng of Human Brain Total RNA were used to generate cDNA libraries in duplicate with the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing. cDNA libraries were amplified using 17, 14, 10, or 7 PCR cycles for the 10 pg, 100 pg, 1 ng, or 10 ng libraries, respectively.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2022 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2022 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Whole genome amplification
  • Immune profiling
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • PCR and qPCR hot summer sale
  • Cell-free DNA purification kit sale
  • PCR samples
  • ThruPLEX HV special offer
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • cDNA synthesis
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody purification and immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • DNA Day 2022
  • That's Good Science Thursdays
  • That's Good Science Thursdays (2021)
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Services & Support
  • Learning centers
  • Applications
  • About
  • Contact us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • Diagnostic solutions
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Real-time PCR
  • mRNA and cDNA synthesis
  • COVID-19 research
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Epigenetics and small RNA sequencing
  • NGS accessories
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • ProteoTuner protein control systems
  • iDimerize inducible protein interaction systems
  • Transfection reagents
  • Mammalian expression plasmids
  • Cell biology assays
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • Accessories
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Expression vectors & systems
  • Glycobiology
  • Antibodies and immunoprecipitation
  • SDS-PAGE & western blotting
  • Protein sequencing
  • Accessory enzymes
  • Diagnostic solutions
  • SARS-CoV-2 clinical diagnostic tests
  • PCR
  • Most popular polymerases
  • Standard PCR
  • High-yield PCR
  • High-fidelity PCR
  • Fast PCR
  • Long-range PCR
  • GC rich PCR
  • Direct PCR
  • PCR master mixes
  • Custom business friendly and automation-ready solutions
  • Molecular diagnostic products
  • GMP-grade products
  • Application-specific PCR
  • Other PCR-related products
  • PCR thermal cyclers
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Mutagenesis kits
  • Ligation enzymes
  • Restriction enzymes
  • Modifying enzymes
  • X-Gal and IPTG
  • Linkers, primers, and cloning vectors
  • Agarose gel electrophoresis
  • Nucleic acid extraction
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • RNA cleanup kits
  • Cell-free DNA purification kits
  • Viral DNA and RNA purification kits
  • Microbiome
  • Accessories and components
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Secondary antibodies
  • Antibody and ELISA accessories
  • Fluorescent protein antibodies
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • Real-time PCR primer sets
  • References and standards for qPCR
  • RNA extraction and analysis for real-time qPCR
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • cDNA synthesis accessories
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Services & Support
  • Instrument services
  • OEM & custom enzyme manufacturing
  • Stem cell services
  • Gene and cell therapy manufacturing services
  • Customer service
  • Technical support
  • Sales
  • Shipping & delivery
  • Partnering & Licensing
  • Feedback
  • Webinars from Takara Bio
  • Vector information
  • Online tools
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Webinars from Takara Bio
  • NGS: biomarkers and oncology
  • NGS: immunology
  • Stem cells
  • Real-time PCR
  • Gene function
  • Protein science
  • Vector information
  • Vector document overview
  • Vector document finder
  • Online tools
  • GoStix Plus FAQs
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Apollo library prep system introduction
  • Next-generation sequencing
  • Product line overview
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Newsletters
  • Webinars
  • Citations
  • Posters
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Cell biology assays
  • Stem cell research
  • Overview
  • Protocols
  • Applications
  • Technical notes
  • Posters
  • Webinars
  • Videos
  • FAQs
  • Citations
  • Selection guides
  • Protein research
  • Capturem technology
  • Antibody purification and immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Expression systems
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • FAQ
  • Go green with lyophilized enzymes
  • LA PCR technology
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Sign up to stay updated
  • Traditional molecular cloning
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • RNA purification
  • RNA purification kit finder
  • Viral DNA and RNA purification
  • Parallel DNA, RNA & protein
  • Automated DNA and RNA purification
  • Accessory selection guides
  • Microbiome
  • Antibodies and ELISA
  • Osteocalcin focus
  • Real-time PCR
  • Overview
  • Product finder
  • Reaction size guidelines
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • FAQs
  • cDNA synthesis
  • Premium total and poly A+ RNA
  • SMARTer RACE 5'/3' Kit
  • Cloning antibody variable regions
  • Applications
  • Molecular diagnostics
  • Pathogen detection
  • Vaccine development
  • Cancer research
  • Immunotherapy research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Molecular diagnostics
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • DSS Takara Bio India Pvt. Ltd : Manufacturing
  • Our partners
  • Special offers
  • New products
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • DNA Day 2022
  • That's Good Science Thursdays
  • That's Good Science Thursdays (2021)
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Special offers
  • PCR and qPCR hot summer sale
  • Cell-free DNA purification kit sale
  • PCR samples
  • ThruPLEX HV special offer
  • Lab Essentials
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us