We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Close

  • ‹ Back to ProteoTuner systems
  • ProteoTuner technology overview
  • ProteoTuner citations
  • Inducible protein stabilization systems product selection guide
Home › Learning centers › Gene function › Inducible systems › ProteoTuner systems › ProteoTuner technology overview

Inducible systems

  • iDimerize systems
    • Inducible protein-protein interactions—iDimerize systems
    • iDimerize systems journal club
    • iDimerize in vivo protocol
    • iDimerize systems citations
    • ARGENT cell signaling regulation kits from ARIAD
  • ProteoTuner systems
    • ProteoTuner technology overview
    • ProteoTuner citations
    • Inducible protein stabilization systems product selection guide
  • Tet-inducible systems
    • Tet systems product selection guide
    • Tet systems overview
    • Tet-One technology overview
    • Tet-On 3G plasmid system kit components
    • Tet-On 3G lentiviral system kit components
    • Tet system webinars
New products
Need help?
Contact Sales

ProteoTuner technology overview

Rapid, precise control of protein levels

Proteotuner technology overview

When investigating complicated questions, a streamlined approach often yields the best results. Having the right tools enables you to make the most of every experiment, including those that seek to explore the intricate world of protein function.

Understanding the biological role of a protein is best accomplished by removing it and then studying the consequences: the loss or gain of various cellular functions. There are many well-established methods for removing proteins, including gene knockdown, the use of Cre-lox technology for gene inactivation, mutations that alter gene function, RNA interference, and various inducible transcription systems. However, all of these approaches target gene function at the DNA and mRNA levels, and most require considerable set-up time. In contrast, ProteoTuner systems allow quick, predictable regulation of protein presence or absence by acting directly on the protein, using a small, cell-permeable synthetic compound. This post-translational regulation offers a number of benefits, from speed and convenience to precise tuning and reversible control.

In this system, a protein of interest is tagged with the destabilization domain (DD), which is stable in the presence of the Shield1 ligand. Thus, a fusion protein can accumulate and be detected by various assays. Removal of the ligand destabilizes the fusion protein and leads to proteolysis.

proteotuner overview mechanism Mechanism overview

Features of ProteoTuner systems
Features Benefits Notes
Rapid kinetics When Shield1 is added to the medium, the DD-fusion protein can accumulate to detectable levels within 15–20 minutes. Conversely, upon Shield1 removal, the half-time for the protein's degradation can be as short as 30 minutes. ProteoTuner controls the protein level by acting directly on the protein, unlike other systems that act either at the transcriptional (inducible gene expression systems) or translational level (RNA interference).
Precise tuning Reduce or increase protein level as needed by decreasing or increasing the concentration of Shield1.
Reversible control Do multiple experiments on the same cells to generate statistically significant data. Easily confirm data. Protein level is ligand-dependent. You can repeat experiments multiple times by simply removing or adding Shield1.
Single-vector system Make just one fusion construct:
  • Convenient

  • Time-saving

  • Plasmid and viral formats

  • With or without drug resistance

  • With or without fluorescent markers

The ProteoTuner mechanism

ProteoTuner technology is based on a destabilizing domain (DD) that can confer its instability to a fused protein of interest. This destabilization can be rescued in a reversible and dose-dependent manner with the addition of a small molecule specific to the DD, Shield1. The definitive mechanism of DD regulation is not fully understood, although it is known that cytoplasmic DD degradation is mediated by the ubiquitin-proteasome system (Egeler et al. 2011).

Reference

Egeler, E. L., Urner, L. M., Rakhit, R., Liu, C. W. & Wandless, T. J. Ligand-switchable substrates for a ubiquitin-proteasome system. J. Biol. Chem. 286, 31328-36 (2011).

proteotuner core elements Two core elements—DD and Shield1

The genetic fusion of the DD to the gene of interest ensures the specificity of the ProteoTuner system, while small-molecule control via Shield1 confers reversibility and dose-dependence on protein stability and function.

Destabilizing domain

The destabilizing domain (DD) is mutant L106P of FKBP12 (12 kD), which is rapidly degraded in mammalian cells. The FKBP12 protein itself is well-characterized for its ability to form a tight complex with immunosuppressive drugs, e.g., FK505 and rapamycin (Pollock and Clackson 2002). This L106P mutant was one of the most potent destabilizing domains found in the initial screen. When cells expressed a yellow fluorescent protein (YFP) fusion of this mutant, 1–2% of normal YFP levels was observed in the absence of its ligand. The addition of Shield1 stabilized the L106P-YFP fusion in a dose-dependent fashion, and full stability was achieved with 1 µM of the ligand (Banaszynski et al. 2006).

Shield1 ligand

The ligand, Shield1, is a small synthetic molecule with a structural bump that binds to the FKBP12 mutant (L106P) with 1,600-fold higher affinity than it does to wild-type FKBP12. The molecular size (750 kD) of Shield1 makes it membrane-permeable, allowing it to easily penetrate into different cellular compartments. Based on microarray data that compared the expression profile of genes in NIH3T3 cells treated with varying concentrations of Shield1, the ligand is free of off-target effects on gene expression (Maynard-Smith et al. 2007).

Chemical structure of the Shield1 ligand

Figure 1. Chemical structure of the Shield1 ligand.

References

Banaszynski, L. A., Chen, L.-C., Maynard-Smith, L. A., Ooi, A. G. L. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006). 

Maynard-Smith, L. A., Chen, L.-C., Banaszynski, L. A., Ooi, A. G. L. & Wandless, T. J. A directed approach for engineering conditional protein stability using biologically silent small molecules. J. Biol. Chem. 282, 24866–72 (2007).

Pollock, R. & Clackson, T. Dimerizer-regulated gene expression. Curr. Opin. Biotechnol. 13, 459–67 (2002).             

proteotuner applications Applications

What can you do with ProteoTuner technology?

The control over protein levels enabled by ProteoTuner systems opens up research possibilities in the areas of both protein function and promoter activity.

Use ProteoTuner Systems to study protein function, promoter activity

Figure 2. Areas of study made possible with ProteoTuner systems.

View the data

ProteoTuner technology has been used to study the intricacies of a wide range of subjects, including cell signaling, viral replication, cytoskeleton rearrangement, neurodegenerative diseases, and cancer biology. Our tech notes and citation links below provide a detailed look into the capabilities of ProteoTuner systems.

A rapid, reversible & tunable method to regulate protein function in living cells

A cell-based screen using yellow fluorescent protein (YFP) identifies FKBP12 mutants that display ligand-dependent stabilization. Take a look at how this system enables predictable and reversible Shield1-dependent regulation of intracellular protein levels.

Predictable and reversible, Shield1-dependent regulation of intracellular protein levels

Figure 3. Predictable and reversible, Shield1-dependent regulation of intracellular protein levels.

Using the ProteoTuner system to directly control the level of a secreted protein and to fine-tune the rescue of a knockout phenotype 

The ProteoTuner System is further characterized in a number of ways—in proving the nontoxic nature of Shield1, showing the system's successful use on secreted proteins as well as cytosolic proteins, and demonstrating its ability to rescue a knockout phenotype.

>Rescue of the ZAP70-dependent signaling pathway with the ProteoTuner system

Figure 4. Rescue of the ZAP70-dependent signaling pathway with the ProteoTuner system.


Rapid control of protein level in the apicomplexan Toxoplasma gondii

In the absence of reverse genetic tools for the easy and rapid modulation of protein levels, ProteoTuner technology allows efficient functional analysis of proteins that play a dual role during host cell invasion and/or intracellular growth of the parasite.

Quantification of invasion and replication of parasite strain DD-Rab11ADN.

Figure 5. Quantification of invasion and replication of parasite strain DD-Rab11ADN.

Monitoring dynamic cellular events by rapidly regulating the amount of a protein via a membrane-permeant ligand

Highly dynamic cellular events, such as cytoskeleton rearrangement, can be monitored by rapidly stabilizing a DD-tagged protein of interest. This data shows how actin filaments are completely remodeled in HeLa cells in less than one hour.

Actin filaments are completely remodeled in HeLa cells in less than 1 hr.

Figure 6. Actin filaments are completely remodeled in HeLa cells in less than 1 hour.


List of other ProteoTuner citations >>

Visit our selection guide to choose the best system for your experiments.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2022 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2023 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • OEM
  • Capabilities and installations
  • OEM enzyme FAQs
  • Enzyme samples for commerical assay developers
  • OEM process
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • cDNA synthesis
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Diagnostic solutions
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • Services & Support
  • OEM
  • Instrument services
  • Stem cell services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Capabilities and installations
  • OEM enzyme FAQs
  • Enzyme samples for commerical assay developers
  • OEM process
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • cDNA synthesis
  • Real-time PCR
  • Nucleic acid purification
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • Vaccine development
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us