We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Close

  • ‹ Back to Customer stories
  • Joining the fight against antibiotic resistance
  • Overcoming technical challenges in extracellular vesicle research
  • Sequencing grey matter
  • Unlocking cardiomyocyte heterogeneity: the role of transcription factors
  • Profiling transcription factors with CUT&RUN sequencing
Isoform analysis Customer data: combining droplet and full-length sequencing
Technical notes View data for SSv4
SSsc outperforms SS2 Customer data: smashing single-cell sensitivity
Alzheimer's disease research New: Alzheimer's disease research and Takara Bio
Home › About › BioView blog › Customer stories › Sequencing grey matter

BioView blog

  • Automation
    • Full-length scRNA-seq in white adipose tissue
    • Takara Bio Single-Cell Workshop, Spring 2021
    • Big problems from small bugs
    • Better biobanking with high-throughput qPCR
    • Top 5 considerations when automating single-cell sequencing
    • What's inside automated single-cell RNA-seq platforms?
  • Cancer research
    • When Epstein-Barr virus becomes a chronic menace
    • Advancing cancer research with plasma-seq
    • Amplifying our understanding of breast cancer metastases
    • Cancer immunotherapy
    • Accurate detection of SNVs and CNVs from 5-cell inputs
  • Career spotlights
    • Career spotlight: territory manager
    • Career spotlight: senior inside sales representative
    • Career spotlight: manufacturing engineer
    • Career spotlight: senior lead development representative
    • Career spotlight: technical support scientist
  • Current events
    • Your spit can save your life
    • Controlling the spread of COVID-19 with direct saliva testing
    • The 2020 Nobel Prize in Chemistry for CRISPR
    • In memory of Hermann Bujard
    • Coronavirus publication: know your enemy
    • Dethroning king coronavirus with novel vaccines
    • Entering new worlds while staying in place
    • Working hard to meet production demands for SARS-CoV-2 testing
    • Shelter in place
    • Takara Bio plays a crucial role in fighting the novel coronavirus
    • Screening for novel coronavirus with one-step RT-qPCR: getting ahead of the outbreak
  • Customer stories
    • Joining the fight against antibiotic resistance
    • Overcoming technical challenges in extracellular vesicle research
    • Sequencing grey matter
    • Unlocking cardiomyocyte heterogeneity: the role of transcription factors
    • Profiling transcription factors with CUT&RUN sequencing
  • Gene editing
    • Measure twice, cut once
    • Successful knockout experiments part II
    • Successful knockout experiments part I
    • Efficient nonviral T-cell engineering using CRISPR
  • Research news
    • A new hiPSC model for type 2 diabetes
    • TCR-seq methods: strengths, weaknesses, and rankings
    • A faster path to analysis for mAbs as therapeutic agents
    • Gene therapy takes a step forward
    • ICELL8 technology keeps cardiovascular research pumping
    • Women's Networking Event at AGBT 2020
    • Detecting infectious disease threats in a changing climate
    • Unraveling the world of microorganisms
    • Microbiomes in the brain and belly
    • Gaining insight into pulmonary arterial hypertension with purified exosomes
    • Total RNA-seq from human biofluids and EVs
    • Seq-ing the small
    • Taking the SMARTer approach to RNA-seq of FFPE tissues
  • Single-cell analysis
    • ABRF publishes single-cell RNA-seq benchmarking study
    • Two RNA-seq approaches reveal resident memory T cells hold the power to reverse liver fibrosis
    • Combination of single-cell RNA-seq approaches yields insights into the brain
    • Combining droplet and full-length sequencing technologies for a complete picture
    • Smashing single-cell sequencing sensitivity
    • Change of heart: exploring transcriptional variation in cardiomyocytes
    • Accelerating chromatin mapping with single-cell ATAC-seq
    • Bringing epigenomic profiling to the single-cell biology stage
    • Using the power of RNA-seq to characterize brain cell types
  • Stem cell research
    • Expert advice for hESC-based cell therapy development
    • Tools for iPSC-derived disease model development
    • 20 years of human stem cell research
    • Choosing a CMO partner for stem cell therapy manufacturing
    • Maximize transduction efficiency in hematopoietic cells
  • Tips and troubleshooting
    • It's a snap! 9 considerations for easy multi-fragment cloning
    • Best practices for RNA-seq: Optimizing sample prep
    • Your quest for a better diagnostic assay development partner ends here
    • Designing primers for site-directed mutagenesis
    • Qualities to look for in your ideal OEM partner
    • Understanding viral titration—behind the science
    • 4 factors to consider for immune repertoire profiling
    • 5 FACS tips for scRNA-seq
    • Choosing a his-tagged purification resin
    • 5 tips to make your single-cell RNA-seq experiments a success
    • Using UMIs in NGS experiments
    • Web and mobile apps
    • One-step vs. two-step RT-qPCR
    • Avoid DNA contamination in PCR
    • When your his-tagged constructs don't bind
  • Women in STEM
    • Women in Science Day 2022
    • Women in STEM interview: Christina Chang
    • Women in STEM interview: Kim Smith
  • That's Good Support!
  • About our blog
Need help?
Contact Sales
Isoform analysis Customer data: combining droplet and full-length sequencing
Technical notes View data for SSv4
SSsc outperforms SS2 Customer data: smashing single-cell sensitivity
Alzheimer's disease research New: Alzheimer's disease research and Takara Bio

Sequencing grey matter: how the Allen Institute is getting a better understanding of the brain

Date: February 18, 2020

Author: Takara Bio Blog Team

Categories: NGS | Single-cell

Bio View logo

The brain is undoubtedly our most complex organ, with many mysteries still waiting to be unraveled. Founded in 2003, the Allen Institute for Brain Science has embarked on the mission of understanding brain function. Next-generation sequencing (NGS) has been a key tool used by them to help map the brain, and their Single Cell RNASeq Core recently surpassed their milestone of processing over 300,000 samples, all while using Takara Bio's SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (SSv4).

We sat down with the core's manager, Kimberly Smith, to talk about what it takes to accomplish such a monumental project.


Associate Director, Molecular Biology Kimberly Smith of the Allen Institute

What is the Institute's overall research goal?

The mission of the Allen Institute for Brain Science is to accelerate the understanding of how the brain works in health and disease. To do this, we aim to establish a baseline of what a normal brain is and all its characteristics and components. This year we are planning on completing sequencing the healthy mouse and human brains and transitioning to disease models, such as Alzheimer's.

Tell us about the samples the core processes.

The majority, about 60% of the 300,000 [processed], have been mouse cells or nuclei, most of those being neuronal. We hope to achieve sequencing the entire mouse brain overall. About 35–39% come from human brain tissue. For these, we use exclusively nuclei coming from postmortem brains or surgical tissues. Another 5% of samples are used for Patch-seq, in which live mouse and human cells are examined using electrophysiology rigs, have their nuclei extracted and sequenced for transcriptomics, and are imaged to look at morphology.

How has your approach to tackling such large datasets changed as new technologies emerge?

I've been here since the very beginning, and projects have really morphed to keep up with the emerging technologies ready for production. When we first started, everybody was doing in situ hybridization (ISH) on the mouse brain. For human ISH, we transitioned into microarrays for more targeted analysis. When we first got into RNA sequencing, we weren't working in single cells, but rather in bulk tissue. About 4–5 years ago, we started transitioning into single-cell sequencing.

How many samples a day is that?

We process five 96-wells of amplification plates using the SMART-Seq v4 process. In addition, we process another five plates through the library portion using Illumina Nextera® XT. With controls, per week, we're processing 2,200 samples through both amplification and library.

How has SMART-Seq v4 helped you accomplish your research goal?

We were very happy when [SMART-Seq] v4 came along because it really increased the gene sensitivity for each cell. Our analysis relies on getting high gene content per cell, as we do clustering [analysis] for thousands of cells. The SSv4 kits have been very reliable from lot to lot, giving us the year-to-year consistency critical for this project. As we get shipments in, it just performs with a consistency and reliability that we couldn't get from component-based and in-house-generated approaches such as Smart-seq2, which requires a lot more logistics in terms of monitoring output and making sure it is consistent.

[SMART-Seq] v4 has really been the backbone to what we have been able to accomplish here for its consistency and reliability."

We imagine keeping consistency between users is also a concern. How does that come into play when collecting such large datasets?

We have a set of six trained research associates that take a lot of pride in their work and standardization day to day, but also to ensure that between people we process things in the same detailed fashion. Using manufactured kits like SMART-Seq v4 helps because it helps condense the number of variables (tubes to open, reagents to pipette, etc.) to help maintain consistency.

How many more samples will be processed for this project?

For mouse, we'll probably process about 350,000 samples to finish up missing regions of the brain and developmental timepoints.

For human, we've pretty much wrapped up with current characterization. The next goal is to process samples from many different people. To get those numbers, we will transition to a higher throughput with something like 10x [Genomics]. However, that work wouldn't be nearly as valuable if we didn't have this existing scaffold of 100,000 nuclei already characterized with SMART-Seq v4.

For Patch-seq, we're looking to use the SMART-Seq Single Cell Kit. These cells are very valuable, giving us three data modalities from each cell, so we are interested in maximizing the gene detection, and the single-cell kit lets us extract the most data that we can from these cells.

It's interesting that you started out with full-length and are now moving to higher-throughput technology. Can you comment more on that approach?

They [full-length and high-throughput end capture] are parallel technologies that are complementary."

I think you're missing the whole picture if you do one exclusively over the other. With the SMART-Seq v4, especially for our mouse samples, we can get very high resolution of the tissue that we profile from as few as 1–20 cells, so if we really want to be layer-specific to profile those specialized cells, we can. For higher-throughput technologies, you really need to start with thousands of cells from a large brain region. They both have their advantages and drawbacks, so that is why we use both.


Congratulations to the Allen Institute's sequencing team on this extraordinary achievement!

We are continually inspired to hear about the innovative advancements that researchers like Kimberly and her team are making in their fields with kits like SMART-Seq v4. We are excited to see them continue their efforts to understand the inner workings of the brain.

Back to Blog Front


Uncover the full tale of your cells

Wondering how well you’ve truly studied your single-cell sample? Worry no more! The SMART-Seq Single Cell Kit's full-length chemistry lets you capture entire transcripts—giving you the power to identify rare genes and detect SNPs, fusions, and more—filling in the gaps that 3’ methods, like 10x, can miss.

Learn more

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2022 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2023 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • cDNA synthesis
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

Uncover the full tale of your cells

Wondering how well you’ve truly studied your single-cell sample? Worry no more! The SMART-Seq Single Cell Kit's full-length chemistry lets you capture entire transcripts—giving you the power to identify rare genes and detect SNPs, fusions, and more—filling in the gaps that 3’ methods, like 10x, can miss.

Learn more

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Diagnostic solutions
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • Services & Support
  • Instrument services
  • Stem cell services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • cDNA synthesis
  • Real-time PCR
  • Nucleic acid purification
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • Vaccine development
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us