We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Close

  • ‹ Back to Gene editing
  • Measure twice, cut once
  • Successful knockout experiments part II
  • Successful knockout experiments part I
  • Efficient nonviral T-cell engineering using CRISPR
Successful CRISPR knockout experiments Blog: Considerations for successful knockout experiments (Part I)
Home › About › BioView blog › Gene editing › Successful knockout experiments part II

BioView blog

  • Automation
    • Full-length scRNA-seq in white adipose tissue
    • Takara Bio Single-Cell Workshop, Spring 2021
    • Big problems from small bugs
    • Better biobanking with high-throughput qPCR
    • Top 5 considerations when automating single-cell sequencing
    • What's inside automated single-cell RNA-seq platforms?
  • Cancer research
    • When Epstein-Barr virus becomes a chronic menace
    • Advancing cancer research with plasma-seq
    • Amplifying our understanding of breast cancer metastases
    • Cancer immunotherapy
    • Accurate detection of SNVs and CNVs from 5-cell inputs
  • Career spotlights
    • Career spotlight: territory manager
    • Career spotlight: senior inside sales representative
    • Career spotlight: manufacturing engineer
    • Career spotlight: senior lead development representative
    • Career spotlight: technical support scientist
  • Current events
    • Your spit can save your life
    • Controlling the spread of COVID-19 with direct saliva testing
    • The 2020 Nobel Prize in Chemistry for CRISPR
    • In memory of Hermann Bujard
    • Coronavirus publication: know your enemy
    • Dethroning king coronavirus with novel vaccines
    • Entering new worlds while staying in place
    • Working hard to meet production demands for SARS-CoV-2 testing
    • Shelter in place
    • Takara Bio plays a crucial role in fighting the novel coronavirus
    • Screening for novel coronavirus with one-step RT-qPCR: getting ahead of the outbreak
  • Customer stories
    • Joining the fight against antibiotic resistance
    • Overcoming technical challenges in extracellular vesicle research
    • Sequencing grey matter
    • Unlocking cardiomyocyte heterogeneity: the role of transcription factors
    • Profiling transcription factors with CUT&RUN sequencing
  • Gene editing
    • Measure twice, cut once
    • Successful knockout experiments part II
    • Successful knockout experiments part I
    • Efficient nonviral T-cell engineering using CRISPR
  • Research news
    • A new hiPSC model for type 2 diabetes
    • TCR-seq methods: strengths, weaknesses, and rankings
    • A faster path to analysis for mAbs as therapeutic agents
    • Gene therapy takes a step forward
    • ICELL8 technology keeps cardiovascular research pumping
    • Women's Networking Event at AGBT 2020
    • Detecting infectious disease threats in a changing climate
    • Unraveling the world of microorganisms
    • Microbiomes in the brain and belly
    • Gaining insight into pulmonary arterial hypertension with purified exosomes
    • Total RNA-seq from human biofluids and EVs
    • Seq-ing the small
    • Taking the SMARTer approach to RNA-seq of FFPE tissues
  • Single-cell analysis
    • ABRF publishes single-cell RNA-seq benchmarking study
    • Two RNA-seq approaches reveal resident memory T cells hold the power to reverse liver fibrosis
    • Combination of single-cell RNA-seq approaches yields insights into the brain
    • Combining droplet and full-length sequencing technologies for a complete picture
    • Smashing single-cell sequencing sensitivity
    • Change of heart: exploring transcriptional variation in cardiomyocytes
    • Accelerating chromatin mapping with single-cell ATAC-seq
    • Bringing epigenomic profiling to the single-cell biology stage
    • Using the power of RNA-seq to characterize brain cell types
  • Stem cell research
    • Expert advice for hESC-based cell therapy development
    • Tools for iPSC-derived disease model development
    • 20 years of human stem cell research
    • Choosing a CMO partner for stem cell therapy manufacturing
    • Maximize transduction efficiency in hematopoietic cells
  • Tips and troubleshooting
    • It's a snap! 9 considerations for easy multi-fragment cloning
    • Best practices for RNA-seq: Optimizing sample prep
    • Your quest for a better diagnostic assay development partner ends here
    • Designing primers for site-directed mutagenesis
    • Qualities to look for in your ideal OEM partner
    • Understanding viral titration—behind the science
    • 4 factors to consider for immune repertoire profiling
    • 5 FACS tips for scRNA-seq
    • Choosing a his-tagged purification resin
    • 5 tips to make your single-cell RNA-seq experiments a success
    • Using UMIs in NGS experiments
    • Web and mobile apps
    • One-step vs. two-step RT-qPCR
    • Avoid DNA contamination in PCR
    • When your his-tagged constructs don't bind
  • Women in STEM
    • Women in Science Day 2022
    • Women in STEM interview: Christina Chang
    • Women in STEM interview: Kim Smith
  • That's Good Support!
  • About our blog
Need help?
Contact Sales
Successful CRISPR knockout experiments Blog: Considerations for successful knockout experiments (Part I)

Successful CRISPR knockout experiments—here's what to consider before starting (Part II)

Date: October 8, 2018

Author: Takara Bio Blog Team

Categories: CRISPR/Cas9 | Useful resources

In the first part of this two-part post, we discussed how to gather information about your target gene and cell type/organism, and sgRNA design and optimization. In this post, we will discuss the mode of delivery of the CRISPR/Cas9 machinery, and methods for verifying knockout efficiencies and characterizing edited cell populations (Figure 1).

Considerations for a successful CRISPR/Cas9 knockout experiment

Figure 1. Key considerations for a successful CRISPR/Cas9 knockout experiment.

Delivery of the CRISPR/Cas9 machinery and analysis of editing

After designing and testing sgRNAs in vitro, you'll need to consider what method of delivery would work best for the cell line with which you are working. You need to pick a method that will work well for your target cell type and minimize cell toxicity caused by the delivery of Cas9 and sgRNA.

Delivery of Cas9 and sgRNA: in our experience, delivery in the form of Cas9-sgRNA ribonucleoprotein complexes (RNPs) either via electroporation or gesicles causes very little toxicity in cells and results in fewer off-target effects compared to plasmid-based delivery. This is largely because RNP delivery results in transient expression of Cas9 and avoids off-target effects triggered by the prolonged presence of plasmids expressing Cas9 under a strong promoter. RNP delivery also avoids dependence on the cellular transcription/translation machinery of the target cells and minimizes undesired integration events resulting in foot-print free genome editing. For cell lines that are hard to transfect or when you work with in vivo models, you could also consider an AAV virus-mediated delivery method.

Checking knockout efficiency: you can check the knockout efficiency in your transfected cell population with a Resolvase assay. You can also characterize the nature of the indels in the overall edited population with an Indel detection kit. Online tools like TIDE or ICE can be employed to perform a fast check of knockout efficiency via amplification of the target site followed by Sanger sequencing of the PCR product. Keep in mind that to accurately perform knockout quantification, high-quality Sanger sequencing traces are essential.

Isolation and expansion of edited cells: once you are confident that the desired knockout has occurred, single cells can be isolated and expanded to obtain isogenic cell lines containing the edit. If you knock out a cell membrane protein, you can isolate the successfully edited population via FACS using an antibody against the extracellular domain of that membrane protein. In other cases, you need to isolate single cells from the whole population and characterize each clonal cell line after its expansion. Single-cell survival and expansion to clonal cell lines can be challenging with certain cell types such as hiPSCs.

Characterization of your knockout clonal cell lines

The last important step in your knockout experiment is to thoroughly characterize the clonal cell lines to make sure that you have achieved a complete knockout of your target gene and that there are no undesired off-target effects.

  • DNA level: characterize indels (Indel Identification kit) as well as zygosity using a genotyping kit for edited clones.
  • RNA level: check for exon skipping via RT-PCR since the indels created could have affected splicing (Mou et al. 2017, Sharpe and Cooper, 2017).
  • Protein level: perform a Western Blot if there is an antibody available (keep in mind that the epitope should be after the targeted site, so truncated proteins will not give false positives) to make sure there is no expression of your target protein.
  • Cell-line specific: if the cells are hiPSCs, you should perform karyotyping and pluripotency analysis, and monitor mutations in the p53 gene (Ihry et al. 2018, Haapaniemi et al. 2018).

Summary

A lot goes into designing the best possible CRISPR-knockout experiment, but these tips will help you get started on the right track. 

References

Haapaniemi, E. et al., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

Ihry, R. J. et al., p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

Mou et al., CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Gen. Biol. 18, 108 (2017).

Sharpe, J. J., and Cooper, T. A. Unexpected consequences: exon skipping caused by CRISPR-generated mutations. Gen. Biol. 18, 109 (2017).

Go back to Successful CRISPR knockout experiments—here's what to consider before starting (Part I)

Back to Blog Front


CRISPR tools and sgRNA design

More CRISPR/Cas9 resources

View our video on how to design guide RNAs, or browse all our tools for CRISPR-based genome editing.

Video on guide RNA design Tools for genome editing

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2022 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2023 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • OEM
  • Capabilities and installations
  • OEM enzyme FAQs
  • Enzyme samples for commerical assay developers
  • OEM process
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • cDNA synthesis
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Diagnostic solutions
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • Services & Support
  • OEM
  • Instrument services
  • Stem cell services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Capabilities and installations
  • OEM enzyme FAQs
  • Enzyme samples for commerical assay developers
  • OEM process
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • cDNA synthesis
  • Real-time PCR
  • Nucleic acid purification
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • Vaccine development
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us