We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Automation
  • Methods of detection for AMR surveillance
  • Optimizing agriculture screening with high-throughput genotyping
  • ICELL8 cx Single-Cell System and combinatorial indexing
  • Full-length scRNA-seq in white adipose tissue
  • Takara Bio Single-Cell Workshop, Spring 2021
  • Big problems from small bugs
  • Better biobanking with high-throughput qPCR
  • Top 5 considerations when automating single-cell sequencing
  • What's inside automated single-cell RNA-seq platforms?
ICELL8 scRNA-seq Enter to win a free scRNA-seq study using your favorite cells
Technical note SMART-Seq Pro kit technical note
Home › About › BioView blog › Automation › Full-length scRNA-seq in white adipose tissue

BioView blog

  • Automation
    • Methods of detection for AMR surveillance
    • Optimizing agriculture screening with high-throughput genotyping
    • ICELL8 cx Single-Cell System and combinatorial indexing
    • Full-length scRNA-seq in white adipose tissue
    • Takara Bio Single-Cell Workshop, Spring 2021
    • Big problems from small bugs
    • Better biobanking with high-throughput qPCR
    • Top 5 considerations when automating single-cell sequencing
    • What's inside automated single-cell RNA-seq platforms?
  • Cancer research
    • Arc-well: sequence single-cell DNA from 30-year old FFPE samples
    • When Epstein-Barr virus becomes a chronic menace
    • Amplifying our understanding of breast cancer metastases
    • Cancer immunotherapy
    • Accurate detection of SNVs and CNVs from 5-cell inputs
  • Career spotlights
    • Career spotlight: territory manager
    • Career spotlight: senior inside sales representative
    • Career spotlight: manufacturing engineer
    • Career spotlight: senior lead development representative
    • Career spotlight: technical support scientist
  • Current events
    • National Hispanic Heritage Month
      • 2024
        • Dr. Nick Silva discusses his passion for training and supporting underrepresented students in our first National Hispanic Heritage Month spotlight interview
        • Dr. Loyda Morales Rodriguez discusses her Hispanic heritage and how it drives her passion for increasing diversity and inclusivity in clinical research
        • Dr. Darya Marchany-Rivera speaks about her passion for helping people—including Hispanic students—meet their goals and dreams
        • Dr. Dianne Laboy Cintrón talks about her experience as an underrepresented student—and studying an “underrepresented” part of the human genome
      • 2023
        • Dr. Jose Barbosa
        • Dr. Yadira Soto-Feliciano
        • Dr. Sarah Stewart
    • Identifying promising HIV vaccine strategies
    • Your spit can save your life
    • Controlling the spread of COVID-19 with direct saliva testing
    • The 2020 Nobel Prize in Chemistry for CRISPR
    • In memory of Hermann Bujard
    • Coronavirus publication: know your enemy
    • Dethroning king coronavirus with novel vaccines
    • Entering new worlds while staying in place
    • Working hard to meet production demands for SARS-CoV-2 testing
    • Shelter in place
    • Takara Bio plays a crucial role in fighting the novel coronavirus
    • Screening for novel coronavirus with one-step RT-qPCR: getting ahead of the outbreak
  • Customer stories
    • PrimeSTAR GXL: a decisive component in characterizing viral RNA structures
    • Joining the fight against antibiotic resistance
    • Overcoming technical challenges in extracellular vesicle research
    • Sequencing grey matter
    • Unlocking cardiomyocyte heterogeneity: the role of transcription factors
    • Profiling transcription factors with CUT&RUN sequencing
  • Gene editing
    • Measure twice, cut once
    • Successful knockout experiments part II
    • Successful knockout experiments part I
    • Efficient nonviral T-cell engineering using CRISPR
  • Research news
    • wellDA-seq: bridging the gap between genetic and epigenetic profiling
    • Engineered PsCas9 for therapeutic genome editing
    • Delivery of functionalized DNA origami into the cell nucleus
    • Demystifying and simplifying the lentiviral production and transduction workflow
    • On-demand pharmaceuticals in space
    • Amplify NGS libraries without bias
    • Takara Bio wins a Crabby!
    • A new hiPSC model for type 2 diabetes
    • TCR-seq methods: strengths, weaknesses, and rankings
    • A faster path to analysis for mAbs as therapeutic agents
    • Gene therapy takes a step forward
    • ICELL8 technology keeps cardiovascular research pumping
    • Women's Networking Event at AGBT 2020
    • Detecting infectious disease threats in a changing climate
    • Unraveling the world of microorganisms
    • Microbiomes in the brain and belly
    • Gaining insight into pulmonary arterial hypertension with purified exosomes
    • Total RNA-seq from human biofluids and EVs
    • Seq-ing the small
    • Taking the SMARTer approach to RNA-seq of FFPE tissues
  • Single-cell analysis
    • Optimized full-length single nuclei RNA sequencing (snRNA-seq) to propel crop innovation
    • ABRF publishes single-cell RNA-seq benchmarking study
    • Two RNA-seq approaches reveal resident memory T cells hold the power to reverse liver fibrosis
    • Combination of single-cell RNA-seq approaches yields insights into the brain
    • Combining droplet and full-length sequencing technologies for a complete picture
    • Smashing single-cell sequencing sensitivity
    • Change of heart: exploring transcriptional variation in cardiomyocytes
    • Accelerating chromatin mapping with single-cell ATAC-seq
    • Bringing epigenomic profiling to the single-cell biology stage
    • Using the power of RNA-seq to characterize brain cell types
  • Stem cell research
    • Tools for iPSC-derived disease model development
    • 20 years of human stem cell research
    • Maximize transduction efficiency in hematopoietic cells
  • Tips and troubleshooting
    • Scaling up: moving from research to large-scale RNA production for mRNA therapeutics
    • Why lyo-ready mixes are crucial for qPCR assay development
    • It's a snap! 9 considerations for easy multi-fragment cloning
    • Best practices for RNA-seq: Optimizing sample prep
    • Designing primers for site-directed mutagenesis
    • Qualities to look for in your ideal OEM partner
    • Understanding viral titration—behind the science
    • 4 factors to consider for immune repertoire profiling
    • 5 FACS tips for scRNA-seq
    • Choosing a his-tagged purification resin
    • 5 tips to make your single-cell RNA-seq experiments a success
    • Using UMIs in NGS experiments
    • Web and mobile apps
    • One-step vs. two-step RT-qPCR
    • Avoid DNA contamination in PCR
    • When your his-tagged constructs don't bind
  • Women in STEM
    • Women in Science Day 2022
    • Women in STEM interview: Christina Chang
    • Women in STEM interview: Kim Smith
  • That's Good Support!
  • About our blog
Need help?
Contact Sales
ICELL8 scRNA-seq Enter to win a free scRNA-seq study using your favorite cells
Technical note SMART-Seq Pro kit technical note

Single-cell full-length transcriptome analysis unravels heterogeneous cell populations within human whole white adipose tissue

Date: January 17, 2023

Author: Takara Bio blog team

Categories: Research News

Bio View logo

White adipose tissue (WAT) is a complex tissue comprised of both adipocytes and non-adipogenic cells. Single-cell (sc) RNA sequencing efforts to characterize the cellular composition of WAT and identify alterations impacting WAT metabolism have traditionally focused on the stromal vascular fraction (SVF), excluding adipocytes. Additionally, most scRNA-seq studies amplify from either the 3′ or 5′ end of the mRNA transcript, but not both. Technical limitations of these end-counting methods have forced scientists to prepare large numbers of input cells for these studies, which complicates sample prep and is unable to offer thorough insight into the transcriptome.

In their groundbreaking study published in iScience, Whytock et al. utilized full-length sc/single-nuclei (sn) RNA-seq chemistry to investigate the transcriptional composition of human whole WAT. With full-length analysis powered by our ICELL8 cx Single-Cell System, they identified three distinct adipocyte clusters and tracked adipocyte differentiation with pseudotime analysis in whole WAT. They also interrogated the non-adipogenic cell population from SVF, providing transcript-level insights missed with previous studies.

Single-nuclei (sn) RNA-seq enables a more comprehensive investigation of all cell types in human whole WAT

Although scRNA-seq technology has enabled high-throughput gene-expression profiling of non-adipocyte cells derived from WAT, most of these studies have been done on animal models or are biased by upstream fluorescence-activated cell sorting (FACS). Additionally, using only the SVF eliminates adipocytes from analysis as the enrichment step removes these cell types. These limitations are critical, because the characterization and comparison of the cellular compositions of SVF, adipocytes, and whole WAT from the same sample(s) is necessary to fully understand the factors impacting WAT metabolism. Unlike scRNA-seq, single nucleotide (sn) RNA-seq has proven capable of interrogating all cell types in WAT, which can facilitate a more comprehensive investigation of all cell types in human whole WAT. In their investigation, Whytock et al. utilized full-length snRNA-seq and scRNA-seq to profile all cell types together within the same tissue—the first such study to do so.

A new method for whole WAT transcriptional profiling based on SMART-Seq chemistry

To accurately interrogate different cell populations, Whytock et al. needed a highly sensitive RNA-seq chemistry capable of providing even gene body coverage. Using our ICELL8 cx Single-Cell System, they prepared single nuclei from WAT and isolated adipocytes and single-cell suspensions from SVF for full-length transcriptome analysis powered by our SMART-Seq chemistry. SMART-Seq chemistry enables researchers to identify the highest number of genes for ultra-low input samples such as single cells, providing the sensitive solution Whytock and colleagues needed for their work.


Figure 1. Transcriptional profiling of different cell types in WAT using full-length chemistry on the ICELL8 cx system. Image adapted from Whytock et al. 2022, iScience, under a CC BY 4.0 license.

Single-nuclei (sn) RNA-seq in whole WAT highlights adipocyte heterogeneity

Using our single-cell full-length RNA-seq solution, Whytock and colleagues were able to annotate the cells comprising human WAT. They identified three adipocyte clusters in human WAT, and further demonstrated that the observed heterogeneity wasn’t captured from isolated adipocytes. Furthermore, the enhanced gene body coverage enabled by SMART-Seq chemistry allowed the researchers to describe the differentiation trajectory of pre-adipocytes. Applying the same protocols on single-cell suspensions from SVF, they also characterized non-adipogenic cells. Importantly, the results from SVF were achieved with far fewer input cells than reported in existing studies.

Figure 2. Full-length transcriptome analysis of 2,253 nuclei from whole WAT samples generated 9 clusters, with pre-adipocytes forming three distinct clusters (left). Adipocyte differentiation was tracked with pseudotime trajectory analysis of adipogenesis transcriptional regulation (right). Image adapted from Whytock et al. 2022, iScience, under a CC BY 4.0 license.

Whytock and colleagues have demonstrated the power of full-length snRNA-seq to profile all cell types together within the same tissue. They identified distinct adipocyte clusters in human whole WAT and assessed the transcriptional profile of adipocyte differentiation through trajectory analysis of pre-adipocytes. They were also able to characterize non-adipogenic cells from SVF using relatively few input cells compared to existing studies on human SVF.

These groundbreaking results were made possible by the high sensitivity and superior gene body coverage achieved with SMART-Seq chemistry. We think that’s good science!

References

Whytock et al. Single cell full-length transcriptome of human subcutaneous adipose tissue reveals unique and heterogeneous cell populations. iScience 25, 8 (2022).

Back to Blog Front


ICELL8 system

Single-cell analysis

Speed, control, confidence

The emergence of NGS-based methods for single-cell analysis has created a demand for automation systems that can simultaneously process many single cells regardless of cell type or size, and that provide high-quality data with high sensitivity and reproducibility. Our ICELL8 cx Single-Cell System is an automated platform for single-cell analysis that utilizes a simple dilution method with a large aperture dispenser for cell isolation, enabling imaging, selection, and characterization of many types of cells in a small amount of time.

Learn more ICELL8 cx Single-Cell System

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us