We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Current events
  • National Hispanic Heritage Month
  • Identifying promising HIV vaccine strategies
  • Your spit can save your life
  • Controlling the spread of COVID-19 with direct saliva testing
  • The 2020 Nobel Prize in Chemistry for CRISPR
  • In memory of Hermann Bujard
  • Coronavirus publication: know your enemy
  • Dethroning king coronavirus with novel vaccines
  • Entering new worlds while staying in place
  • Working hard to meet production demands for SARS-CoV-2 testing
  • Shelter in place
  • Takara Bio plays a crucial role in fighting the novel coronavirus
  • Screening for novel coronavirus with one-step RT-qPCR: getting ahead of the outbreak
Vaccine development Vaccine development workflow
SmartChip system In the news: large-scale COVID-19 testing with SmartChip automation
SARS-CoV-2 image Direct viral detection via qPCR
Home › About › BioView blog › Current events › Dethroning king coronavirus with novel vaccines

BioView blog

  • Automation
    • Methods of detection for AMR surveillance
    • Optimizing agriculture screening with high-throughput genotyping
    • ICELL8 cx Single-Cell System and combinatorial indexing
    • Full-length scRNA-seq in white adipose tissue
    • Takara Bio Single-Cell Workshop, Spring 2021
    • Big problems from small bugs
    • Better biobanking with high-throughput qPCR
    • Top 5 considerations when automating single-cell sequencing
    • What's inside automated single-cell RNA-seq platforms?
  • Cancer research
    • Arc-well: sequence single-cell DNA from 30-year old FFPE samples
    • When Epstein-Barr virus becomes a chronic menace
    • Amplifying our understanding of breast cancer metastases
    • Cancer immunotherapy
    • Accurate detection of SNVs and CNVs from 5-cell inputs
  • Career spotlights
    • Career spotlight: territory manager
    • Career spotlight: senior inside sales representative
    • Career spotlight: manufacturing engineer
    • Career spotlight: senior lead development representative
    • Career spotlight: technical support scientist
  • Current events
    • National Hispanic Heritage Month
      • 2024
        • Dr. Nick Silva discusses his passion for training and supporting underrepresented students in our first National Hispanic Heritage Month spotlight interview
        • Dr. Loyda Morales Rodriguez discusses her Hispanic heritage and how it drives her passion for increasing diversity and inclusivity in clinical research
        • Dr. Darya Marchany-Rivera speaks about her passion for helping people—including Hispanic students—meet their goals and dreams
        • Dr. Dianne Laboy Cintrón talks about her experience as an underrepresented student—and studying an “underrepresented” part of the human genome
      • 2023
        • Dr. Jose Barbosa
        • Dr. Yadira Soto-Feliciano
        • Dr. Sarah Stewart
    • Identifying promising HIV vaccine strategies
    • Your spit can save your life
    • Controlling the spread of COVID-19 with direct saliva testing
    • The 2020 Nobel Prize in Chemistry for CRISPR
    • In memory of Hermann Bujard
    • Coronavirus publication: know your enemy
    • Dethroning king coronavirus with novel vaccines
    • Entering new worlds while staying in place
    • Working hard to meet production demands for SARS-CoV-2 testing
    • Shelter in place
    • Takara Bio plays a crucial role in fighting the novel coronavirus
    • Screening for novel coronavirus with one-step RT-qPCR: getting ahead of the outbreak
  • Customer stories
    • PrimeSTAR GXL: a decisive component in characterizing viral RNA structures
    • Joining the fight against antibiotic resistance
    • Overcoming technical challenges in extracellular vesicle research
    • Sequencing grey matter
    • Unlocking cardiomyocyte heterogeneity: the role of transcription factors
    • Profiling transcription factors with CUT&RUN sequencing
  • Gene editing
    • Measure twice, cut once
    • Successful knockout experiments part II
    • Successful knockout experiments part I
    • Efficient nonviral T-cell engineering using CRISPR
  • Research news
    • wellDA-seq: bridging the gap between genetic and epigenetic profiling
    • Engineered PsCas9 for therapeutic genome editing
    • Delivery of functionalized DNA origami into the cell nucleus
    • Demystifying and simplifying the lentiviral production and transduction workflow
    • On-demand pharmaceuticals in space
    • Amplify NGS libraries without bias
    • Takara Bio wins a Crabby!
    • A new hiPSC model for type 2 diabetes
    • TCR-seq methods: strengths, weaknesses, and rankings
    • A faster path to analysis for mAbs as therapeutic agents
    • Gene therapy takes a step forward
    • ICELL8 technology keeps cardiovascular research pumping
    • Women's Networking Event at AGBT 2020
    • Detecting infectious disease threats in a changing climate
    • Unraveling the world of microorganisms
    • Microbiomes in the brain and belly
    • Gaining insight into pulmonary arterial hypertension with purified exosomes
    • Total RNA-seq from human biofluids and EVs
    • Seq-ing the small
    • Taking the SMARTer approach to RNA-seq of FFPE tissues
  • Single-cell analysis
    • Optimized full-length single nuclei RNA sequencing (snRNA-seq) to propel crop innovation
    • ABRF publishes single-cell RNA-seq benchmarking study
    • Two RNA-seq approaches reveal resident memory T cells hold the power to reverse liver fibrosis
    • Combination of single-cell RNA-seq approaches yields insights into the brain
    • Combining droplet and full-length sequencing technologies for a complete picture
    • Smashing single-cell sequencing sensitivity
    • Change of heart: exploring transcriptional variation in cardiomyocytes
    • Accelerating chromatin mapping with single-cell ATAC-seq
    • Bringing epigenomic profiling to the single-cell biology stage
    • Using the power of RNA-seq to characterize brain cell types
  • Stem cell research
    • Tools for iPSC-derived disease model development
    • 20 years of human stem cell research
    • Maximize transduction efficiency in hematopoietic cells
  • Tips and troubleshooting
    • Scaling up: moving from research to large-scale RNA production for mRNA therapeutics
    • Why lyo-ready mixes are crucial for qPCR assay development
    • It's a snap! 9 considerations for easy multi-fragment cloning
    • Best practices for RNA-seq: Optimizing sample prep
    • Designing primers for site-directed mutagenesis
    • Qualities to look for in your ideal OEM partner
    • Understanding viral titration—behind the science
    • 4 factors to consider for immune repertoire profiling
    • 5 FACS tips for scRNA-seq
    • Choosing a his-tagged purification resin
    • 5 tips to make your single-cell RNA-seq experiments a success
    • Using UMIs in NGS experiments
    • Web and mobile apps
    • One-step vs. two-step RT-qPCR
    • Avoid DNA contamination in PCR
    • When your his-tagged constructs don't bind
  • Women in STEM
    • Women in Science Day 2022
    • Women in STEM interview: Christina Chang
    • Women in STEM interview: Kim Smith
  • That's Good Support!
  • About our blog
Need help?
Contact Sales
Vaccine development Vaccine development workflow
SmartChip system In the news: large-scale COVID-19 testing with SmartChip automation
SARS-CoV-2 image Direct viral detection via qPCR

COVID-19 vaccine development: the quest to dethrone the evil King Coronavirus

Date: August 24, 2020

Author: Laurel Barchas

Categories: Exclusive content

Vaccine types New partnerships
Bio View logo

We are at a decisive moment in history. With the rise of the novel coronavirus SARS-CoV-2 and its devastating toll, the scientific and medical communities must act together to stop COVID-19 disease. It will take a massive, coordinated effort to better understand the virus and how it spreads, develop and deploy tests to tell whether someone is or has been infected, and create and disseminate vaccines and treatments. These are daunting tasks with many unknown factors and biological, socioeconomic, and logistical barriers. However, leaders in pharma, biotech, and academia are forming cross-industry collaborations to overcome these obstacles, rapidly generating knowledge, tests, vaccines, and treatments with support from government and funding organizations to accelerate the process.

To remove SARS-CoV-2's crown, we need to act quickly to develop and widely disseminate novel vaccines. Due to the tendency of viruses to mutate into new strains, the varying effects of vaccines on individuals, the existence of several viable vaccine types, manufacturing limitations, and difficulties in providing access to all, creating a single vaccine will not be enough; we must design, manufacture, and deliver multiple vaccines globally.

The vaccine development landscape covers a range of platforms, including new vaccines based on already-licensed technology and next-generation approaches that may be faster to develop or more flexible to modify. Successful vaccine candidates must be rapidly developed, manufactured at large scale, readily distributed and adopted, and made broadly accessible (Thanh Le et al. 2020). While the normal vaccine development pathway can take over 10 years, we do not have that kind of time. Therefore, collaborative efforts are underway to create novel, greatly accelerated vaccine development paradigms, which begin with the design of the vaccine technology, advance into preclinical and clinical studies, and proceed to cGMP manufacturing at scale—faster than ever before.

SARS-CoV-2 virion, with red crown-like surface proteins. "Novel Coronavirus SARS-CoV-2" image reused from NIAID per CC BY 2.0.


Meet the vaccine contenders

There is an unprecedented global effort underway to develop new weapons that attack the virus. As of August 20, 2020, 41 vaccines had advanced to preclinical studies and clinical trials (check RAPS COVID-19 Vaccine Tracker for the most up-to-date information). The growing number of vaccines in all stages of development (>90) are spread across at least four vaccine types: virus vaccines, viral vector vaccines, protein-based vaccines, and nucleic-acid vaccines (Callaway 2020a). All vaccines are based on the body's ability to recognize a foreign antigen (in this case, either the whole virion or a piece of it that helps it enter cells—the spike or S protein) and build immunity. Vaccine types differ by the material delivered and means of delivery into the body, speed of development, testing requirements, ability to mass-produce, and efficacy.

Models of a SARS-CoV-2 virus and a surface spike protein.
"Novel Coronavirus SARS-CoV-2 Spike Protein" image used from NIAID per CC BY 2.0.

1

Virus vaccines

Many existing vaccines, such as the seasonal flu vaccine, consist of inactivated or live but weakened forms of the virus that still express antigens that elicit an immune response. To make a weakened or "live attenuated" SARS-CoV-2 virus, human or animal cells are infected with SARS-CoV-2 in its native form and serially passaged until the virus mutates to a less potent form. Alternatively, directed weakening mutations can be introduced using genetic engineering techniques. Heat or chemicals are used to make a fully inactivated virus, but large amounts of live virus are needed as starting material. The good news is that these straightforward processes have already been used for quite a few licensed human vaccines, and there is a robust vaccine production infrastructure already in place (Amanat and Krammer 2020). The downsides are that infectious SARS-CoV-2 needs to be handled, it takes some time to generate the attenuated virus and confirm antigen integrity, and extensive safety testing is required—more so than for other vaccine types. However unlikely, there is still potential for infection in those who receive the vaccine.

2

Viral vector vaccines

A potentially safer option is to use a different, genetically engineered virus as a vessel to deliver SARS-CoV-2 genes, including the S protein. A replicating viral vector infects cells and makes them produce more engineered virus without harming the cells, ultimately delivering that S protein to antigen-presenting cells, which kickstarts the immune response. There is a catch: sometimes, people have already built up immunity to the viral vector; depending on the chosen vector, the effectiveness of the vaccine could be reduced, and booster shots might be needed to confer longer-term immunity. This also applies to nonreplicating viral vectors that travel directly to antigen-presenting cells without being multiplied by other cells first. Importantly, no infectious coronavirus is needed to create the vector, and there is a good deal of preclinical and clinical evidence that this approach works for other emerging viruses.

3

Protein-based vaccines

Instead of building immunity using an antigen like the S protein of an actual coronavirus or a newly expressed S protein delivered by a viral vector, one form of protein-based vaccines directly exposes fragments of the S protein's receptor binding domain to antigen-presenting cells. Protein-based vaccines rely on recombinant protein production using, for example, a mammalian cell culture-based expression system. One can take advantage of this platform's flexibility to create fusion proteins of additional subunits that will activate a range of immune cell types for a stronger immune response (Liu et al. 2020; Kalita et al. 2020). The first multitope peptide-based vaccine has already begun clinical trials. The use of novel delivery devices can also improve immunogenicity; a microneedle array system was used to intracutaneously deliver a trimeric recombinant subunit vaccine to mice, causing a more robust humoral response than the same vaccine delivered using a traditional subcutaneous injection (Kim et al. 2020).

Once proven safe and effective, a high yield of recombinant protein would be needed to vaccinate a large population, which might be difficult with a limited global production capacity (Amanat and Krammer 2020). Also, the integrity of the recombinant proteins will need to be confirmed before use, as protein products can denature if the storage conditions are not ideal and will expire. Another form of protein-based vaccines uses just the shell of SARS-CoV-2 virions—without the genetic material that is needed for infectivity—to trigger a stronger immune response. However, these virus-like particles may be more difficult to manufacture (Callaway 2020a).

4

Nucleic-acid vaccines

Producing DNA and RNA vaccines involves synthesizing a plasmid or piece of messenger RNA encoding the S protein. Modes of delivery of the engineered construct into muscle or skin cells include electroporation or jet injection (for DNA) and injection of lipid-encapsulated RNA. Nucleic-acid vaccines have several advantages that make them appropriate for responding to COVID-19 (Smith et al. 2020). After a viral genome is sequenced, the production of candidate vaccine constructs can be completed in a matter of days. DNA vaccine manufacturing is significantly faster, less expensive, and safer than other vaccine types, and is more easily scaled up (Amanat and Krammer 2020). DNA is very stable, making it suitable for deployment and stockpiling. However, no licensed vaccines thus far use this technology, so regulatory and infrastructure hurdles may slow down the process.

Bypassing the need for DNA to RNA transcription, RNA vaccines are directly translated into protein, without the risks of incorporation into the genome or insertion-induced mutagenesis, as mRNA is naturally degraded after protein expression (Liu et al. 2020). These vaccines can even contain mRNA encoding multiple coronavirus antigen targets to stimulate a potent immune response. However, this immune response is a double-edged sword; while high immunoreactivity kills more coronavirus, it also damages host tissues. Moderate or severe immune reactions have been observed in a phase 1 clinical trial (Wang, Kream, and Stefano 2020). As with DNA vaccines, large-scale manufacturing of RNA vaccines is immediately feasible and would enable rapid production for vaccination of mass populations.


Allies in the fight

As time is of the essence, collaborations in vaccine development are crucial to halting the coronavirus. Knights in shining armor are banding together to develop novel nucleic-acid vaccines. Takara Bio Inc. has announced a partnership with Osaka University and AnGes Co., Ltd. to manufacture and test a platform involving a DNA plasmid vaccine and jet injection delivery device, which is currently being evaluated in preclinical studies. The DNA plasmid technology was developed by Professor Ryuichi Morishita (Osaka University Graduate School of Medicine, Clinical Gene Therapy) and AnGes. AnGes' track record of commercializing human growth factor therapeutic products using DNA manufacturing technology, including the launch of Colategen in 2019, has helped the new technology quickly transition from preclinical to clinical trials (Co-development of DNA vaccine for new coronavirus infectious disease (COVID-19) by AnGes and Osaka University: Listed in the list of vaccine development organizations published by WHO (World Health Organization), 2020). As of July 22, 2020, AnGes and Osaka University have completed a low-dose intramuscular vaccination phase 1/2 clinical trial at Osaka City University Hospital, and they are currently conducting the next trial using high doses of the vaccine (DNA vaccine for new coronavirus infectious disease ( COVID-19 ) : Phase 1/2 clinical trial Low dose vaccination completed, 2020).

Ultimately, the vaccine will be delivered using Daicel's new Actranza Lab administration device, which uses an accelerant to propel the vaccine into the skin, an organ that contains more immunocompetent cells than muscle. Daicel reports that their device can improve gene expression efficiency over conventional intramuscular delivery using a needle, and it may also increase antibody production (DAICEL Participates in the Joint DNA Vaccine Development Against the New Coronavirus Conducted by Osaka University and AnGes, Inc. with Our Novel Drug Delivery Device, "ActranzaTM lab." Technology, 2020).

Plasmid DNA can be manufactured in large quantities quickly. On Takara Bio's end, the vaccines would be produced in their main GMP facility in West Japan. This one-stop, integrated manufacturing facility houses three independent areas for plasmid DNA (and recombinant protein), virus, and cell processing. Each area has an independent airflow pipeline, material flow, vaporized hydrogen system for decontamination, and personnel team. They are also equipped with independent QC laboratories and dedicated facilities for cell banking. Since the independent processing areas are all under one roof, the facility can operate with high efficiency and zero contamination.

Takara Bio Inc.'s award-winning GMP Center for Gene and Cell Processing.

President and CEO of Takara Bio Inc. Koichi Nakao is confident they can produce vaccines for all clinical trials, and if Japan's health ministry approves a production and sales license this fall, they can make 200,000 more this year for clinical use by early 2021 (Takara Bio drives Japan's quest for a coronavirus vaccine - Nikkei Asian Review, 2020). Takara Bio Inc. expects to be able to mass-produce the vaccine, which will contribute to the loosening of restrictions in Japan and around the world. Putting the pieces in place now will allow us to respond faster to SARS-CoV-2 antigenic drifts/shifts and future infectious disease outbreaks.

Standing together to defeat the king

Many technologies, including other unique vaccines and antibody therapies not mentioned here, are being explored and tested for their ability to bring our shared challenger to its knees. The WHO has proposed a Solidarity Vaccine Trial with an adaptive design in the hopes of accelerating testing and adoption of more vaccines than possible with a traditional design (Callaway 2020b). The NIH is also thinking big with its industry partnership aiming to coordinate vaccine and drug development. The Coalition of Epidemic Preparedness, a nonprofit funding agency, is supporting efficacy trials and manufacturing costs for nine vaccines. The few vaccine developers that will get their products approved and scaled up will set the stage for other developers to take their products through safety and efficacy trials, licensing, and production under a regulatory authority.

An apoptotic cell (green) infected with SARS-COV-2 virus particles (purple).
"Novel Coronavirus SARS-CoV-2" image used from NIAID per CC BY 2.0.

Takara Bio is proud to be on the front line in the fight to defeat the coronavirus by enabling innovative vaccine development and better detection through the application of our products and technologies. Our significant contribution to the effort includes our support of other groups' research, development, and product manufacturing. We provide researchers with the tools they need to not only outsmart this virus but also to enrich the study and development of technologies in other areas of human health. We are honored to join the larger, global quest to find ways of building partnerships and networks that facilitate the control of COVID-19 and better prepare us for those inevitable future challengers.

References

Amanat, F. & Krammer, F. Perspective SARS-CoV-2 Vaccines: Status Report. Immunity 52, 583–589 (2020).

Callaway, E. The race for coronavirus vaccines: a graphical guide. Nature 580, 576–577 (2020a).

Callaway, E. Scores of coronavirus vaccines are in competition - how will scientists choose the best? Nature (2020b). doi:10.1038/d41586-020-01247-2

Co-development of DNA vaccine for new coronavirus infectious disease ( COVID-19 ) by AnGes and Osaka University : Listed in the list of vaccine development organizations published by WHO ( World Health Organization ). at <https://www.anges.co.jp/pdf.php?pdf=uXX0t6llGsGmKyCEGVjNaDSwbUdNINeA.pdf>

DAICEL Participates in the Joint DNA Vaccine Development Against the New Coronavirus Conducted by Osaka University and AnGes, Inc. with Our Novel Drug Delivery Device, "Actranza™ lab." Technology. at <https://www.daicel.com/en/news/assets/pdf/00000815-1.pdf>

DNA vaccine for new coronavirus infectious disease ( COVID-19 ) : Phase 1/2 clinical trial Low dose vaccination completed. at <https://www.anges.co.jp/pdf.php?pdf=Ip2CnBEXdD3U3Re7piAoNXiiDhiM9r6f.pdf>

Kalita, P., Padhi, A. K., Zhang, K. Y. J. & Tripathi, T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb. Pathog. 145, 104236 (2020).

Kim, E. et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 55, 102743 (2020).

Liu, C. et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent. Sci. 6, 315–331 (2020).

Smith, T. R. F. et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 11, 2601 (2020).

Takara Bio drives Japan's quest for a coronavirus vaccine - Nikkei Asian Review. at <https://asia.nikkei.com/Spotlight/Coronavirus/Takara-Bio-drives-Japan-s-quest-for-a-coronavirus-vaccine>

Thanh Le, T. et al. The COVID-19 vaccine development landscape. Nature 19, 305–306 (2020).

Wang, F., Kream, R. M. & Stefano, G. B. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med. Sci. Monit. 26, e924700-1–e924700-8 (2020).

Back to Blog Front

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us