We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Technical notes
  • Enhancing biomarker discovery with SMART-Seq Pro kit and ICELL8 cx system
  • ICELL8 cx system target enrichment for fusions
  • ICELL8 cx system reagent formulation and dispense guidelines
  • Improved detection of gene fusions, SNPs, and alternative splicing
  • Full-length transcriptome analysis
  • High-throughput single-cell ATAC-seq
  • Protocol: High-throughput single-cell ATAC-Seq
  • Single-cell identification with CellSelect Software
  • Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs
  • Combined TCR profiling and 5’ DE in single cells
  • Automated, high-throughput TCR profiling
ICELL8 cx product page ICELL8 cx Single-Cell System
Overview ICELL8 technology overview
ICELL8 video resources ICELL8 video resources
Home › Learning centers › Automation systems › ICELL8 introduction › Technical notes › Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs

ICELL8 introduction

  • ICELL8 cx applications
    • Archival nanowell sequencing
  • ICELL8 technology overview
  • ICELL8 cx technical specifications
  • ICELL8 technical specifications (original system)
  • ICELL8 system vs plate-seq
  • Webinars
    • Webinar: Leveraging single-cell transcriptomics and epigenomics for biomarker discovery
    • Advances in single-cell indexing registration
    • Single-Cell Workshop at 2020 NextGen Omics Series UK
    • The power of full-length scRNA-seq
    • Sign up: cardiomyocyte webinar
  • Technical notes
    • Enhancing biomarker discovery with SMART-Seq Pro kit and ICELL8 cx system
    • ICELL8 cx system target enrichment for fusions
    • ICELL8 cx system reagent formulation and dispense guidelines
    • Improved detection of gene fusions, SNPs, and alternative splicing
    • Full-length transcriptome analysis
    • High-throughput single-cell ATAC-seq
    • Protocol: High-throughput single-cell ATAC-Seq
    • Single-cell identification with CellSelect Software
    • Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs
    • Combined TCR profiling and 5’ DE in single cells
    • Automated, high-throughput TCR profiling
  • Sample preparation protocols
    • Basic cell preparation for the ICELL8 cx system
    • Protocol: Nuclei isolation from mammalian cells
    • Protocol: Mouse cardiomyocyte preparation
    • Isolate cells of any size
  • Video resources
  • Citations
  • Posters
  • System & software notices
New products
Need help?
Contact Sales
ICELL8 cx product page ICELL8 cx Single-Cell System
Overview ICELL8 technology overview
ICELL8 video resources ICELL8 video resources
Tech Note

Single-cell analysis elucidates cardiomyocyte differentiation from human induced pluripotent stem cells

Introduction Methods Results Conclusions

Introduction  

Recent studies have demonstrated high variability in cell cycle and gene expression in cells with identical morphology, indicating that even "homogeneous" cells—such as those within the same tissue or culture vessel—can exhibit transcriptomic heterogeneity. One example of this is induced pluripotent stem cells (iPSCs): when tissue-specific differentiation is initiated, cells do not uniformly transition; rather, the differentiation rate varies from cell to cell. By analyzing single cells, it is possible to capture gene expression changes that would otherwise be masked in bulk analyses and gain a clearer picture of the differentiation process.

To address this challenge, Drs. Akira Watanabe and Yoshinori Yoshida at Kyoto University's iPS Cell Research Institute leveraged our open, flexible ICELL8 Single-Cell System to develop a method for transcriptomically characterizing the differentiation of human iPSCs into cardiomyocytes.

Methods  

Following the induction of human iPSCs into cardiomyocytes, cells were sampled at Days 1, 3, 9, and 21. Cell sample concentrations were normalized, and then cells were processed on the ICELL8 Single-Cell System—an advanced, integrated platform that allows for the automated acquisition and imaging of 1,200–1,500 single cells on a nanowell chip (Figure 1). Cell concentrations were normalized, stained with propidium iodide and Hoechst 33342 dyes, and then dispensed onto an ICELL8 3' DE chip. Nanowells were imaged and those containing single, live cells were automatically identified and subjected to reverse transcription and RNA-seq library preparation. Single-cell RNA-seq libraries were sequenced and gene expression analyses were performed on an Illumina HiSeq® sequencer. Gene expression information from each cell was visualized using T-distributed stochastic neighbor embedding (tSNE) analysis.

Overview of the ICELL8 Single-Cell System workflow

Figure 1. ICELL8 Single-Cell System workflow overview. Cells, controls, and fiducial mix are dispensed onto a 5,184-well chip at an average of one cell per well. CellSelect Software automatically identifies nanowells containing live, single cells and creates a dispense map targeting only these wells, saving time and reagents. Targeted nanowells are then subjected to cDNA synthesis, with a barcode in each well allowing the association of sequencing data with a given cell. cDNA is extracted and purified, RNA-seq libraries are generated via PCR off-chip, and then libraries are subjected to sequencing.

Results  

For each time point, a total of ~1,000 single, live cells was obtained, with an average of 120,000 reads (750,000 maximum) and 1,200 genes (4,500 maximum) identified per cell. tSNE analysis of single-cell RNA-seq data showed clustering of cells by transcriptomic signatures along their differentiation pathway, with robust clustering by timepoint (Figure 2) and heterogeneity across all clusters, except Day 21 (i.e., differentiated cardiomyocytes, labeled "cluster 3"). This heterogeneity was particularly notable in cluster 5, which exhibited a high proportion of both Day 3 and Day 9 cells, and a lower proportion of Day 1 cells. This pattern is consistent with the appearance and disappearance of known markers: as differentiation proceeded, the expression of iPSC-specific genes decreased, while the expression of cardiomyocyte-specific genes increased (Figure 3).

Single-cell RNA-seq (scRNA-seq) of iPSCs reveals robust clustering based upon post-induction time.

Figure 2. Single-cell RNA-seq of iPSCs reveals robust clustering based upon time post-induction. Cells from several time points were observed in all clusters (with the exception of Day 21, the differentiated cardiomyocytes). This was particularly notable in cluster 5, which contained cells from Days 1, 3, and 9.

Proportion of cells expressing iPSC and cardiomyocyte markers

Figure 3. Proportions of cells expressing iPSC and cardiomyocyte markers throughout differentiation. Following induction of iPSCs into cardiomyocytes, expression of iPSC-specific genes tapers off, with a rapid drop at 21 days (Panel A). Similarly, cardiomyocyte-specific genes increase expression, with a sharp peak at 21 days (Panel B). This corresponds with the relative homogeneity of terminally differentiated cardiomyocytes (Day 21 cells), as compared to cells from earlier time points.

Conclusions  

The ICELL8 Single-Cell System is an open platform that inspires the development of new single-cell analysis methods and allows a deeper look inside the transcriptomic programs underlying complex biological phenomena. The ICELL8 system can be used to resolve developmental changes at the single-cell level, which sheds light on processes like differentiation from pluripotent cells to terminally differentiated, mature cells. This study found that, during induced differentiation, transcriptional profiles tended to coincide with certain timepoints (iPSC-specific gene expression decreased, while cardiomyocyte-specific gene expression increased over time), and clustering of single cells via tSNE analysis revealed transcriptional heterogeneity throughout differentiation. While not a part of this analysis, data generated using the ICELL8 system could enable de novo identification of transcripts that characterize each cluster and provide further insight into the mechanics of the iPSC-to-cardiomyocyte differentiation program.


Overview ICELL8 technology overview
ICELL8 cx tech specs ICELL8 cx technical specs
ICELL8 cell types isolated ICELL8 cell isolation list
Technical notes ICELL8 technical notes
Webinars ICELL8 webinars
Posters ICELL8 posters
ICELL8 citations ICELL8 citations
More bioinformatics information Bioinformatics resources

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us