We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Close

  • ‹ Back to Technical notes
  • Enhancing biomarker discovery with SMART-Seq Pro kit and ICELL8 cx system
  • ICELL8 cx system target enrichment for fusions
  • ICELL8 cx system reagent formulation and dispense guidelines
  • Improved detection of gene fusions, SNPs, and alternative splicing
  • Full-length transcriptome analysis
  • High-throughput single-cell ATAC-seq
  • Protocol: High-throughput single-cell ATAC-Seq
  • Single-cell identification with CellSelect Software
  • Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs
  • Combined TCR profiling and 5’ DE in single cells
  • Automated, high-throughput TCR profiling
Home › Learning centers › Automation systems › ICELL8 introduction › Technical notes › Combined TCR profiling and 5’ DE in single cells

ICELL8 introduction

  • ICELL8 technology overview
  • ICELL8 cx technical specifications
  • ICELL8 technical specifications (original system)
  • ICELL8 system vs plate-seq
  • Webinars
  • Technical notes
    • Enhancing biomarker discovery with SMART-Seq Pro kit and ICELL8 cx system
    • ICELL8 cx system target enrichment for fusions
    • ICELL8 cx system reagent formulation and dispense guidelines
    • Improved detection of gene fusions, SNPs, and alternative splicing
    • Full-length transcriptome analysis
    • High-throughput single-cell ATAC-seq
    • Protocol: High-throughput single-cell ATAC-Seq
    • Single-cell identification with CellSelect Software
    • Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs
    • Combined TCR profiling and 5’ DE in single cells
    • Automated, high-throughput TCR profiling
  • Sample preparation protocols
    • Basic cell preparation for the ICELL8 cx system
    • Protocol: Nuclei isolation from mammalian cells
    • Protocol: Mouse cardiomyocyte preparation
    • Isolate cells of any size
  • Video resources
  • Citations
  • Posters
  • System & software notices
New products
Need help?
Contact Sales
Tech Note

High-throughput TCR profiling with 5'-end differential analysis of single cells

  • High-throughput, high sensitivity clonotype and immune-cell-type identification from >1,000 cells in a single experiment
  • Use of negative and positive controls in the experiment provides more confidence in data
  • Simple GUI-based scTCR analyzer and mappa bioinformatics tools to speed up your data analysis
Introduction Results Conclusions Methods References

Introduction  

The ability to profile T-cell receptor (TCR) expression at the single-cell level allows researchers to understand how particular alpha-beta (αβ) chain pairings contribute to the antigen specificity of individual TCRs. High-throughput single-cell TCR profiling is ideal because it provides a comprehensive view of T-cell heterogeneity and plasticity. However, since immune cell populations are complex and heterogeneous, it is also critical to dissect the cell types present in the profiled population to get a full understanding of the immune response. Towards this end, whole transcriptome analysis (WTA) can be used to aid in the identification of the different cell types—and even subtypes—present within a sample. We have developed a protocol (Figure 1) compatible with the ICELL8 Human TCR a/b Profiling and ICELL8 cx Human TCR a/b Profiling workflows that allows T-cell receptor (TCR) clonotype determination and 5'-end differential expression analysis from the same cell.

Results  

Gene detection in different cell lines

For the experiments described below, 5'-DE libraries were generated for T cells and peripheral blood mononuclear cells (PBMCs) dispensed with the ICELL8 Single-Cell System using the 5'-DE protocol developed for the ICELL8 Human TCR a/b Profiling workflow (Figure 1). This method processes a portion of the barcoded full-length cDNA generated from oligo-dT priming during the on-chip RT-PCR to create libraries for 5' DE using Nextera® tagmentation and amplification of the 5'-end barcodes to create a whole transcriptome library. The on-chip cDNA amplification produces enough product to process another portion for clonotyping analysis in parallel. The same cDNA can also be processed using two rounds of gene-specific PCR to amplify cDNA sequences corresponding to the variable regions of TCRa and TCRb transcripts as described in our TCR profiling technical note.

Workflow for combined TCR profiling and 5' DE analysis

Figure 1. Generating 5'-DE libraries using the ICELL8 and ICELL8 cx Human TCR Profiling workflows. Top. After dispensing of samples (cells, positive control, and negative control) onto the ICELL8 TCR Chip, cDNAs were synthesized via oligo-dT priming on-chip. A Bioanalyzer trace from purified full-length cDNA shows an average cDNA amplicon length of 964 bp. Bottom. Following extraction of the cDNA from the chip, a portion of the cDNA was used for selective amplification of the TCRa and TCRb sequences of the TCR variable regions generating a library with broad peaks between ~650 to 1,150 bp and maximal peaks in the range of ~700 to 900 bp (see our TCR profiling technical note for full details). Another portion of the cDNA was processed using a Nextera XT DNA Library Preparation kit to enrich for cDNA derived from mRNA 5' ends. The 5'-end Nextera library shows an average size of ~700 bp. Peaks labeled "LM" and "UM" correspond to DNA reference markers.

Following sequencing of the pooled single-cell 5’-DE libraries, we assessed the number of reads obtained per barcode (Figure 2). Taking advantage of the ICELL8 system’s ability to include controls, 15 negative controls containing all the reaction components except the sample were included as part of this experiment. This data was then used to set a confident read threshold to ensure high-quality data for the experimental samples. Pooled single-cell 5’-DE libraries after Nextera (Figure 1) were sequenced on a NextSeq® system to generate an average of 30K reads per cell. At an average sequencing depth of 30K reads per cell, we detected a median of ~1,150 genes in the PBMCs and T cells. Reads from the positive control RNA are well aligned with the reads for the T-cell samples and show good separation from the negative controls which are representative of background noise.

Reads per barcode

Figure 2. Single-cell RNA-seq profiling of T cells and PBMCs showing reads per barcode (cell). Each dot in the box plot represents the number reads for a given cell. For this data set, 15 negative control wells, 15 positive control wells (Jurkat total RNA), 530 T cells, and 590 PBMCs were processed and sequenced.

Assessment of cell types present within a PBMC sample

We next confirmed that we could distinguish various cell types present within a PBMC sample, using the sequencing data obtained from single-cell 5'-DE libraries. Principal component analyses were performed based on the top 500 most variable genes. Interestingly, the tSNE plot, based on the top 500 expressed genes (Figure 3), identified four main clusters. Notably, in the largest cluster, there is representation of both the PBMC and T-cell samples. This overlap is expected given that T cells can make up an estimated 70–80% of PBMC populations.

Cell clustering

Figure 3. Clustering of T cells and PBMCs. Panel A. tSNE based on PBMC, T cell, and positive control samples with greater than 10K reads. Expression was normalized by the median coverage across cells and natural log transformed. Clustering was based on the top 500 expressed genes, resulting in four main clusters. Panel B. Individual cells were classified by calculating the maximum expression across a panel of expression markers for each of the cell types listed in the figure legend. Cells with less than 10 total reads aligned to any cell type within the panel were classified as low expressers. This classification scheme highlights the major cell types associated with each cluster in the tSNE plots.

In humans, the majority of PBMCs are lymphocytes (approximately 70–90% of total) with additional populations of monocytes and dendritic cells (~10–30% and 5–20% of all PBMCs, respectively). The lymphocyte population is further comprised of T cells (70–85%), B cells (5–20%), and NK cells (5–20%). We used different cell-specific markers based on published data (Palmer et al. 2006), to identify various populations of cells present within the PBMC sample (Figures 4). Consistent with reporting in the literature, T cells made up the largest percentage of the PBMCs, and the location of this cluster overlaps with the negatively selected T cells that were also profiled in these experiments. Furthermore, dendritic cells were the rarest cell type within the PBMC sample. We also identified B cell, monocyte, and NK cell populations using cell-specific markers expressed in these cell types.

Cell populations present in PBMC sample

Figure 4. Identifying cell types in the PBMC population. Cell type clusters within the PBMC sample were identified based on known cell-type markers for T cells (CD3G), B cells (MS4A1), NK cells (GNLY), monocytes (FCGR3A), and dendritic cells (FCER1A).

Conclusions  

The human TCR a/b profiling workflow with 5' differential expression for the ICELL8 systems can be used to generate Illumina sequencing libraries from thousands of single immune cells for the determination of TCR αß pairing as well as cell type information. This method is a highly sensitive and economical approach to identify clonotypes and cell types by using 5'-DE and TCR-specific priming on the same cDNA. The combination of this chemistry and the automated ICELL8 Single-Cell System or ICELL8 cx Single-Cell System enables profiling of >1,000 cells showcasing the general utility and scalability of this approach for studies investigating paired TCR clonotype diversity. Furthermore, the ability to set up positive and negative controls generates greater confidence in the data, especially when working with complex samples.

Methods  

Nextera libraries for 5'-end differential expression analysis were generated using the 5'-DE workflow as described in the ICELL8 Human TCR a/b Profiling User Manual. For a positive control, Control Jurkat Total RNA (Takara Bio) was used. Isolated PBMCs (AllCells) were thawed in RPMI and washed once in media before staining the cells. T cells were isolated from whole blood using the EasySep Direct Human T Cell Isolation Kit (STEMCELL Technologies). Isolation was performed per manufacturer's recommendation. For sequencing, the final library was diluted to 1.8 pM, including a 20% PhiX Control v3 (Illumina) spike-in for sequencing. Sequencing was performed on an Illumina NextSeq sequencer using the 150-cycle NextSeq 550 System mid-output kit (Illumina) with paired-end, 2 x 75 base pair reads.

References  

Palmer, C., Diehn, M., Alizadeh, A. A. & Brown, P. O. Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics 7, 115 (2006).

Related Products

Cat. # Product Size License Quantity Details
640048 ICELL8® Collection Kit 1 Pkg USD $25.00

The ICELL8 Collection Kit consists of a fixture, tube, and film that allow users to spin down the contents of an ICELL8 chip to collect the contents of processed chips (e.g., extracted cDNA) into a tube.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640048: ICELL8 Collection Kit

640048: ICELL8 Collection Kit
640109 ICELL8® Loading Kit 1 Pkg USD $25.00

The ICELL8 Loading Kit contains films and blotting paper designed to be used with ICELL8 chips. The Blotting Paper is used to blot chips after dispensing of cells into a chip by the ICELL8 MultiSample NanoDispenser (MSND). The Optical Imaging Film is used to seal chips prior to imaging of the nanonwells with the ICELL8 Imaging System. The TE Sealing Film is used to seal the chip after reagents have been dispensed into cells selected for processing for reverse transcription.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640109: ICELL8 Loading Kit

640109: ICELL8 Loading Kit
640178 ICELL8® TCR Chip 1 Chip USD $1950.00

The ICELL8 TCR Chip is part of the ICELL8 Human TCR a/b Profiling workflow, which enables users to analyze T-cell receptor (TCR) diversity from single T cells using the ICELL8 Single-Cell System. Each well in the 5,184-nanowell chip contains a preprinted barcode. Each ICELL8 TCR Chip contains 1,728 unique barcodes, and each barcode is printed three times on the chip. CellSelect Software is used to detect single-cell-bearing wells and direct nanowell-specific delivery of coupled SMART RT-PCR reagents to only those wells on the ICELL8 TCR Chip that have been selected for further processing. Barcoded cDNA from the selected wells are PCR-amplified in-chip. The full-length barcoded amplicons are then pooled off-chip, and the purified cDNA is used as template in the first TCR-specific PCR. The product from the first TCR-specific PCR is used as a template in a second TCR-specific PCR to incorporate Illumina indexed primers. Most importantly, the kit allows for efficient, cost-effective, high-throughput single-cell capture of complete V(D)J variable regions of TCR transcripts.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640178: ICELL8 TCR Chip

640178: ICELL8 TCR Chip
640179 ICELL8® Human TCR a/b Profiling - Indexing Primer Set 1 Chip USD $198.00

The ICELL8 Human TCR a/b Profiling - Indexing Primer Set contains PCR primers for the amplification of indexed, paired-end, Illumina-compatible sequencing libraries.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640179: ICELL8 Human TCR a/b Profiling - Indexing Primer Set

640179: ICELL8 Human TCR a/b Profiling - Indexing Primer Set
640180 ICELL8® Human TCR a/b Profiling - Indexing Primer Set 5 Chips USD $648.00

The ICELL8 Human TCR a/b Profiling - Indexing Primer Set contains PCR primers for the amplification of indexed, paired-end, Illumina-compatible sequencing libraries.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640180: ICELL8 Human TCR a/b Profiling - Indexing Primer Set

640180: ICELL8 Human TCR a/b Profiling - Indexing Primer Set
640181 ICELL8® Human TCR a/b Profiling - Indexing Primer Set 10 Chip USD $1250.00

The ICELL8 Human TCR a/b Profiling - Indexing Primer Set contains PCR primers for the amplification of indexed, paired-end, Illumina-compatible sequencing libraries.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640181: ICELL8 Human TCR a/b Profiling - Indexing Primer Set

640181: ICELL8 Human TCR a/b Profiling - Indexing Primer Set
640182 ICELL8® Human TCR a/b Profiling Reagent Kit Each USD $499.00

The ICELL8 Human TCR a/b Profiling Reagent Kit is required for the ICELL8 Human TCR a/b Profiling and ICELL8 cx Human TCR a/b Profiling workflows, which enables users to analyze T-cell receptor (TCR) diversity from single T cells using the ICELL8 platform. The kit leverages SMART technology and employs a 5' RACE-like approach to capture complete V(D)J variable regions of TCR transcripts. The reagents are dispensed into a ICELL8 TCR Chip (Cat. No. 640178) or ICELL8 cx TCR Chip (Cat. No. 640200) which includes 5,184 nanowells, containing 1,728 preprinted barcodes (each barcoded is printed three times on the chip) along with primers from the ICELL8 Human TCR a/b Profiling - Indexing Set (Cat. Nos. 640179, 640180 & 640181) that incorporate Illumina-specific adaptor sequences during cDNA amplification. The protocol generates indexed libraries that are ready for sequencing on Illumina platforms. The protocol also allows whole transcriptome library generation of 5' ends of all transcripts.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640182: ICELL8 Human TCR a/b Profiling Reagent Kit

640182: ICELL8 Human TCR a/b Profiling Reagent Kit
640197 ICELL8® cx Loading Kit Each USD $95.00

The ICELL8 cx Loading Kit includes Blotting Paper along with SmartChip films. This kit supports NGS applications on the ICELL8 cx Single-Cell System.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components
640200 ICELL8® cx TCR Chip 1 Chip USD $1950.00

The ICELL8 cx TCR Chip enables users to analyze T-cell receptor (TCR) diversity from single T cells using the ICELL8 cx Single-Cell System. Each well in the 5,184-nanowell chip contains a preprinted barcode, and 1,728 unique barcodes are present on each chip with each barcode printed in three locations on the chip. ICELL8 cx CellSelect Software is used to detect wells bearing a single cell and direct nanowell-specific delivery of coupled SMART technology RT-PCR reagents to only those wells on the ICELL8 cx TCR Chip that have been selected for further processing. Barcoded cDNA from the selected wells are amplified on-chip by PCR. The full-length barcoded amplicons are then pooled off-chip, and the purified cDNA is used as a template in the first TCR-specific PCR reaction. The product from the first TCR-specific PCR reaction is used as a template in a second TCR-specific PCR reaction to incorporate Illumina indexed primers. Most importantly, the kit allows for efficient, cost-effective, and high-throughput single-cell capture of complete V(D)J variable regions of TCR transcripts.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

640200: ICELL8 cx TCR Chip

640200: ICELL8 cx TCR Chip

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2022 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2022 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • PCR and qPCR hot summer sale
  • Cell-free DNA purification kit sale
  • GoStix Plus special offers
  • PCR samples
  • ThruPLEX HV special offer
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • cDNA synthesis
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody purification and immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • DNA Day 2022
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Services & Support
  • Learning centers
  • Applications
  • About
  • Contact us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • Diagnostic solutions
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Real-time PCR
  • mRNA and cDNA synthesis
  • COVID-19 research
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Epigenetics and small RNA sequencing
  • NGS accessories
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • ProteoTuner protein control systems
  • iDimerize inducible protein interaction systems
  • Transfection reagents
  • Mammalian expression plasmids
  • Cell biology assays
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • Accessories
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Expression vectors & systems
  • Glycobiology
  • Antibodies and immunoprecipitation
  • SDS-PAGE & western blotting
  • Protein sequencing
  • Accessory enzymes
  • Diagnostic solutions
  • Infectious diseases
  • Reproductive health
  • PCR
  • Most popular polymerases
  • Standard PCR
  • High-yield PCR
  • High-fidelity PCR
  • Fast PCR
  • Long-range PCR
  • GC rich PCR
  • Direct PCR
  • PCR master mixes
  • Custom business friendly and automation-ready solutions
  • Molecular diagnostic products
  • GMP-grade products
  • Application-specific PCR
  • Other PCR-related products
  • PCR thermal cyclers
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Mutagenesis kits
  • Ligation enzymes
  • Restriction enzymes
  • Modifying enzymes
  • X-Gal and IPTG
  • Linkers, primers, and cloning vectors
  • Agarose gel electrophoresis
  • Nucleic acid extraction
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • RNA cleanup kits
  • Cell-free DNA purification kits
  • Viral DNA and RNA purification kits
  • Microbiome
  • Accessories and components
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Secondary antibodies
  • Antibody and ELISA accessories
  • Fluorescent protein antibodies
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • Real-time PCR primer sets
  • References and standards for qPCR
  • RNA extraction and analysis for real-time qPCR
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • cDNA synthesis accessories
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Services & Support
  • Instrument services
  • OEM & custom enzyme manufacturing
  • Stem cell services
  • Gene and cell therapy manufacturing services
  • Customer service
  • Technical support
  • Sales
  • Shipping & delivery
  • Partnering & Licensing
  • Feedback
  • Webinars from Takara Bio
  • Vector information
  • Online tools
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Webinars from Takara Bio
  • NGS: biomarkers and oncology
  • NGS: immunology
  • Stem cells
  • Real-time PCR
  • Gene function
  • Protein science
  • Vector information
  • Vector document overview
  • Vector document finder
  • Online tools
  • GoStix Plus FAQs
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Apollo library prep system introduction
  • Next-generation sequencing
  • Product line overview
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Newsletters
  • Webinars
  • Citations
  • Posters
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Cell biology assays
  • Stem cell research
  • Overview
  • Protocols
  • Applications
  • Technical notes
  • Posters
  • Webinars
  • Videos
  • FAQs
  • Citations
  • Selection guides
  • Protein research
  • Capturem technology
  • Antibody purification and immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Expression systems
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • FAQ
  • Go green with lyophilized enzymes
  • LA PCR technology
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Sign up to stay updated
  • Traditional molecular cloning
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • RNA purification
  • RNA purification kit finder
  • Viral DNA and RNA purification
  • Parallel DNA, RNA & protein
  • Automated DNA and RNA purification
  • Accessory selection guides
  • Microbiome
  • Antibodies and ELISA
  • Osteocalcin focus
  • Real-time PCR
  • Overview
  • Product finder
  • Reaction size guidelines
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • FAQs
  • cDNA synthesis
  • Premium total and poly A+ RNA
  • SMARTer RACE 5'/3' Kit
  • Cloning antibody variable regions
  • Applications
  • Molecular diagnostics
  • Pathogen detection
  • Vaccine development
  • Cancer research
  • Immunotherapy research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Molecular diagnostics
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • DSS Takara Bio India Pvt. Ltd : Manufacturing
  • Our partners
  • Special offers
  • New products
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • DNA Day 2022
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Special offers
  • PCR and qPCR hot summer sale
  • Cell-free DNA purification kit sale
  • GoStix Plus special offers
  • PCR samples
  • ThruPLEX HV special offer
  • Lab Essentials
  • IVTpro mRNA Synthesis kit
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us