We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Close

  • ‹ Back to Cre recombinase
  • Control your Cre recombinase experiments
  • Fast Cre delivery with gesicle technology
Home › Learning centers › Gene function › Gene editing › Cre recombinase › Fast Cre delivery with gesicle technology

Gene editing

  • Gene editing product finder
  • Gene editing tools and information
    • sgRNA design tools
    • Tools for successful CRISPR/Cas9 genome editing
    • Gene editing posters
    • Customer data for Guide-it products
    • How to design sgRNA sequences
    • Introduction to the CRISPR/Cas9 system
    • Gene editing of CD3+ T cells and CD34+ HSCs
  • CRISPR/Cas9 knockouts
    • Mutation detection kit comparison
    • Screening for effective guide RNAs
    • Monoallelic versus biallelic mutants
    • Indel identification kit for mutation characterization
  • CRISPR/Cas9 knockins
    • Choosing an HDR template format
    • Homology-directed repair FAQs
    • Mouse CRISPR knockin protocol
    • Site-specific gene knockins using long ssDNA
    • Efficient CRISPR/Cas9-mediated knockins in iPS cells
    • Oligo design tool for detecting precise insertions
      • Oligo design tool user guide (insertions)
  • Genome-wide screening
    • CRISPR library screening
    • CRISPR library screening webinar
    • Phenotypic screen using sgRNA library system
  • Creating and screening for SNPs
    • SNP detection with knockin screening kit
    • Oligo design tool for SNP screening
      • Oligo design tool user guide (SNPs)
    • Sign up: SNP engineering webinar
    • Guide-it SNP Screening Kit FAQs
  • CRISPR/Cas9 delivery methods
    • Electroporation-grade Cas9 for editing in diverse cell types
    • CRISPR/Cas9 gene editing with AAV
    • CRISPR/Cas9 gesicles overview
    • Cas9 Gesicles—reduced off-target effects
    • sgRNA-Cas9 delivery to many cell types
    • Tet-inducible Cas9 for gene editing
  • Cre recombinase
    • Control your Cre recombinase experiments
    • Fast Cre delivery with gesicle technology
New products
Need help?
Contact Sales
Tech Note

Rapid, efficient Cre recombinase delivery for genome modification with Cre gesicles

Cre Recombinase Gesicles

  • Fast delivery of Cre-recombinase protein directly to target cells
  • Simpler than plasmid transfection, without persistent Cre expression
  • Efficient delivery and expression in most cell types
Introduction Results Conclusions Methods

Introduction  

Widely used for genome modification (e.g., knockout and knockin studies), Cre recombinase has conventionally been delivered to cells via a plasmid or viral gene delivery. While widely adopted, these conventional methods have some drawbacks, stemming from the use of nucleic acids for the introduction of Cre recombinase to target cells. These disadvantages include inefficient excision, unintended recombination events due to persistent expression, and lengthy protocols.

Cre Recombinase Gesicles are cell-derived nanovesicles that deliver active Cre recombinase protein directly to your target cells. Simpler to use than either plasmid or viral gene delivery, these gesicles allow you to quickly and efficiently flox a broad range of cell types on demand. This one tool simultaneously saves time and opens up new experimental possibilities. Please visit our overview page for a summary of the advantages of this system and general information on Cre recombinase.

Results  

Concentrated Cre recombinase introduced directly into target cells

Cre Recombinase Gesicles overcome the shortcomings of viral and plasmid Cre recombinase delivery by enabling the introduction of Cre protein directly to target cells. This is accomplished without the co-delivery of its coding gene, thus minimizing the chance of unintended recombination events.

How we make them (Figure 1):

  1. 293T cells express both Cre recombinase and a particular nanovesicle-inducing glycoprotein responsible for elevating gesicle production from the cell membrane.

  2. iDimerize technology is used to enrich Cre recombinase in the gesicles. During gesicle formation, a dimerizer ligand forces interaction between Cre recombinase and the membrane-localized CherryPicker protein.

  3. Loaded Cre Recombinase Gesicles are harvested from the supernatant, thus providing a concentrated stock for use on target cells.

How you use them (Figure 2):

  1. Simply apply a few microliters of Cre Recombinase Gesicles to your target cells in the presence of Polybrene. We recommend a brief plate centrifugation step at 1,000g to enhance gesicle-to-cell contact.

  2. The gesicles fuse with the target cell membrane. Your cells will be transiently labeled by the CherryPicker red fluorescent protein, allowing visual confirmation of delivery.

  3. At the same time, active Cre recombinase is released into your target cells; the lack of dimerizer ligand in your target cell culture medium allows the Cre protein to dissociate from the CherryPicker protein. 

Gesicle technology mechanism  

Figure 1. Mechanism of nucleic-acid-free genome modification with gesicle technology. Gesicle production is stimulated by over-expression of a nanovesicle-inducing glycoprotein. Cre recombinase is enriched in the gesicles using iDimerize technology. Loaded gesicles merge with target cells to deliver active Cre recombinase.

Testing gesicle delivery and Cre recombinase activity

Figure 2. LacZ reporter assay for Cre Recombinase Gesicle activity. Top Panel. Gesicle effectiveness was tested using a reporter cell line in which the lacZ gene is only expressed following removal of a stop codon by Cre recombinase activity. Bottom Panel. The high concentration of blue cells in the center image indicate high recombinase activity. Red fluorescence in the right-hand image provides easy visualization of gesicle delivery to target cells.

Gesicles outperform plasmid transfection

Cre Recombinase Gesicles make it possible to flox your cells on demand. Cre recombinase is only present when you need it, and acts quickly and reliably within your target cells. In contrast, recombinase delivery by plasmid transfection is followed by a delay in expression due to transcription and translation of the protein. Gesicles avoid this delay because the protein is present and active as soon as the gesicles are applied to the cells. This high level of efficiency is easily visible in the reporter assay described above, where expression of lacZ is only possible when an upstream loxP-flanked stop codon is excised by Cre recombinase. Following staining for LacZ expression, cells display markedly faster Cre recombinase activity following the gesicle treatment compared to plasmid transfection (Figure 3).

cells display markedly faster Cre recombinase activity following the gesicle treatment compared to plasmid transfection.

Figure 3. Comparison of Cre recombinase activity from gesicle delivery and plasmid transfection. Cre recombinase activity was tested using the LacZ reporter cell line, wherein the lacZ gene is only expressed following Cre recombinase activity. Delivery via Cre Recombinase Gesicles resulted in faster activity than via plasmid transfection.

Efficient delivery and high expression in most cell types

This protocol requires no preparation or pretreatment of your cells and is gentle enough to use with any cell type, including dividing and nondividing cells, primary cells, and cell lines. Cre Recombinase Gesicles maintain efficient delivery and high levels of activity regardless of cell type (Figure 4).

Cre Recombinase Gesicles maintain efficient delivery and high levels of activity regardless of cell type.

Cell lineRPEHepG2CHOK1NIH3T3BJMCF-7293HeLaHT1080JurkatKBM-7Raji
Vol (µl) 20 20 20 20 20 20 20 20 20 20 20 20
% positive 95.9 86.6 97.7 95.1 79.8 21.6 81.4 64.1 65.3 77.4 30.3 72.6

Figure 4. ZSGreen1 reporter assay. Gesicles were tested using a reporter cell line where ZsGreen1 is only expressed following Cre recombinase activity. Figure. Fluorescence microscopy images of HepG2, Jurkat, and Raji cell lines exposed to Cre Recombinase Gesicles. Table. FACS analysis of each cell line after exposure to Cre Recombinase Gesicles. 

Conclusions  

Cre Recombinase Gesicles provide a fast, easy method for efficient genome modification without the use of nucleic acids. Recombinase expression is kept under strict control—unintended recombination events are less likely due to the lack of persistent expression of Cre. Since no transcription or translation steps are needed, target cells are floxed much faster than with plasmid or viral delivery methods. Gesicles show excellent performance in most cell types, thus expanding research possibilities.

Methods  

For ZsGreen1 reporter assays, cell lines were transduced with the pLVX-LoxP-ZsGreen1 vector, with subsequent selection in puromycin to create stable lines. The vector contains ZsGreen1 cDNA separated from the EF1a promoter by a floxed stop cassette. In the presence of Cre recombinase, the stop cassette is removed, permitting expression of ZsGreen1. Stable lines were exposed to 20 µl Cre Recombinase Gesicles, centrifuged at 1,000g for 30 min at 32°C, and incubated for an additional 3 hr at 37°C. Media was then exchanged and cells were permitted to grow for an additional 48 hr, at which time they were imaged by fluorescence microscopy and analyzed by FACS for ZsGreen1 expression.

The same vector was used for LacZ reporter assays, substituting lacZ for ZsGreen1 cDNA. Cells were either transfected (using Xfect Transfection Reagent) for 6 hr with a plasmid expressing Cre recombinase, or treated with 20 µl of Cre Recombinase Gesicles for 3 hr. 24 hr after treatment, cells were stained for LacZ expression using the Beta-Galactosidase Staining Kit.

Related Products

Cat. # Product Size License Quantity Details
631449 Cre Recombinase Gesicles 200 uL USD $538.00

License Statement

ID Number  
44 The DsRed-Monomer and the Fruit Fluorescent Proteins are covered by one or more of the following U.S. Patents: 7,671,185, 7,9110,714 and 8,664,471.
69 The DsRed-Monomer, DsRed Express, E2-Crimson and the Fruit Fluorescent Proteins are covered by one or more of the following U.S. Patents: 7,250,298; 7,671,185; 7,910,714; 8,664,471 and 8,679,749.
83 The Living Colors mCherry Monoclonal Antibody has been obtained from National University of Shimane.
225 Gesicle Technology. This product and its use are the subject of European patents and patent applications related to EP09306091, owned by Inserm Transfert. For research use only – not for therapeutic or diagnostic use in humans. No rights granted other that the right to use for research purposes.

In addition, Inserm Transfert is the owner of European patent application EP09306092.9 relating to the use of microvesicles for cell engineering purposes. The products should not be used to develop, make, have made, use and sell or otherwise distribute any product, composition, method, service or process for commercial services that would infringe said patent application, unless a license is negotiated with Inserm Transfert, at 7 rue Watt, 75013 Paris, France (www.inserm-transfert.fr).
405 This product is protected by U.S. Patent Nos. 9593356 and 10793828 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
259 This product is protected by Japanese Patent No. 6454352 and corresponding U.S. pending patent and other foreign patents pending. For further license information, please contact a Takara Bio USA licensing representative by email at  licensing@takarabio.com.

Cre Recombinase Gesicles are cell-derived nanovesicles used to deliver active Cre recombinase protein directly into target cells. When they are applied to your target cells, the gesicles fuse with the plasma membrane and deliver a temporary dose of Cre recombinase, which facilitates recombination at loxP sites contained within the cell. As an added benefit, Cre Recombinase Gesicles contain CherryPicker protein, a membrane-targeted version of the mCherry fluorescent protein that helps to confirm the delivery of the Cre recombinase to your target cells.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

293T cells are used to produce Cre Recombinase Gesicles, which allow rapid and efficient genome modification in the target cells of your choice

293T cells are used to produce Cre Recombinase Gesicles, which allow rapid and efficient genome modification in the target cells of your choice
293T cells are used to produce Cre Recombinase Gesicles, which allow rapid and efficient genome modification in the target cells of your choice. Nanovesicle-inducing glycoproteins stimulate gesicle formation from the 293T cell line. iDimerize technology incorporates Cre recombinase into the gesicles and associates it with CherryPicker red fluorescent protein. After the gesicles pinch off from the producer cells, they fuse with the plasma membrane of the target cells and release Cre recombinase into the cell. The CherryPicker protein provides convenient visualization of delivery to your cells.

Back

ZsGreen1 reporter assay for efficiency of Cre Recombinase Gesicles with various cell lines

ZsGreen1 reporter assay for efficiency of Cre Recombinase Gesicles with various cell lines
ZsGreen1 reporter assay for efficiency of Cre Recombinase Gesicles with various cell lines. pLVX-LoxP-ZsGreen1 contains ZsGreen1 cDNA separated from the EF1a promoter by a floxed stop cassette. In the presence of Cre recombinase, the stop cassette is removed, permitting high-level expression of ZsGreen1. All cell lines were transduced with this vector, followed by selection in puromycin to create stable lines. These lines were then exposed to a dilution series of recombinase-containing gesicles, centrifuged at 1,000 x g for 30 min at 32°C, and incubated for an additional 3 hr at 37°C. After 3 hr, media was exchanged and cells were permitted to grow for an additional 48 hr, at which time they were analyzed by FACS for ZsGreen1 expression.

Back

LacZ Reporter Assay for Cre Recombinase Gesicles

LacZ Reporter Assay for Cre Recombinase Gesicles
LacZ Reporter Assay for Cre Recombinase Gesicles. Panel A. Gesicle effectiveness was tested using a reporter cell line in which the lacZ gene is only expressed following removal of a stop codon by Cre recombinase activity. Cells were either transfected for 6 hr with a plasmid expressing Cre recombinase, or treated with 20 µl Cre Recombinase Gesicles for 3 hr. 24 hr after treatment, cells were stained for lacZ expression using the Beta Galactosidase Staining Kit (Cat. No. 31780). Panel B. The high concentration of blue cells in the center image indicate high recombinase activity. Red fluorescence in the right-hand image provides easy visualization of gesicle delivery to target cells.

Back

Visualization of ZsGreen1 reporter assay for Cre Recombinase Gesicles in various cell lines

Visualization of ZsGreen1 reporter assay for Cre Recombinase Gesicles in various cell lines
Visualization of ZsGreen1 reporter assay for Cre Recombinase Gesicles in various cell lines. pLVX-LoxP-ZsGreen1 contains ZsGreen1 cDNA separated from the EF1a promoter by a floxed stop cassette. In the presence of Cre recombinase, the stop cassette is removed, permitting high-level expression of ZsGreen1. All cell lines were transduced with this vector, followed by selection in puromycin to create stable lines. These lines were then exposed to a dilution series of recombinase-containing gesicles, centrifuged at 1,000 x g for 30 min at 32°C, and incubated for an additional 3 hr at 37°C. After 3 hr, media was exchanged and cells were permitted to grow for an additional 48 hr, at which time they were imaged by fluorescence microscopy for ZsGreen1 expression.

Back

631449: Cre Recombinase Gesicles

631449: Cre Recombinase Gesicles

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2022 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2023 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Quality
  • Expertise
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • cDNA synthesis
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Diagnostic solutions
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • Services & Support
  • Instrument services
  • OEM & custom enzyme manufacturing
  • Stem cell services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Quality
  • Expertise
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • cDNA synthesis
  • Real-time PCR
  • Nucleic acid purification
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • Vaccine development
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us