We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About

Close

  • ‹ Back to Pluripotent stem cells
  • Transferring iPSCs on MEFs to DEF-CS
  • Transferring iPSCs from other media to DEF-CS
  • Spin embryoid body formation
  • Reprogramming PBMCs
  • Reprogramming fibroblasts
Home › Learning centers › Stem cell research › Protocols › Pluripotent stem cells › Spin embryoid body formation

Protocols

  • Hepatocytes
    • Video protocols for hiPS-HEP v2 cells
    • Getting started with hepatocyte differentiation
  • Pluripotent stem cells
    • Transferring iPSCs on MEFs to DEF-CS
    • Transferring iPSCs from other media to DEF-CS
    • Spin embryoid body formation
    • Reprogramming PBMCs
    • Reprogramming fibroblasts
  • Cardiomyocytes
    • Cardiomyocytes in FLIPR 384-well plate format
    • Cardiomyocytes on the Patchliner system
    • Cardiomyocytes on the Maestro MEA system
    • Cardiomyocytes on the MED64 MEA system
    • Cardiomyocytes on the CardioExcyte 96 system
    • Cardiomyocytes on the xCELLigence RTCA CardioECR system
New products
Need help?
Contact Sales
User-generated protocol

Confirmation of pluripotency by spin embryoid body formation

Introduction Materials required Protocol

Introduction  

Embryoid bodies (EBs) are three-dimensional aggregates comprised of human pluripotent stem cells (hPSCs). Within EBs, hPSCs undergo differentiation and cell specification along the three germ layers, which are commonly used as an assessment of the initial hPSCs' pluripotency. The protocol for formation of spin EBs can be used as a basis for the development of protocols for directed differentiation via EBs.

Materials required  

  • 24-well plates, cell-culture treated, flat bottom
  • 96-well plates, non-treated, V bottom
  • Advanced RPMI 1640
    (with glucose, sodium pyruvate, and non-essential amino acids; without L-glutamine and HEPES)
  • B-27 Supplement (50X), serum free
  • DEF-CS COAT-1
  • GlutaMAX-I (100X; 200 mM)
  • PBS Dulbecco's with Ca2+ & Mg2+ (D-PBS +/+)
  • PBS Dulbecco's w/o Ca2+ & Mg2+ (D-PBS –/–)
  • Penicillin-streptomycin
    (PEST; 10,000 units/ml of penicillin and 10,000 µg/ml of streptomycin)
  • TrypLE Select Enzyme (1X), no phenol red
    (Thermo Fisher Scientific, Cat. # 12563011)
  • Y27632

Protocol  

Medium preparation

Preparing the in vitro differentiation (IVD) medium

Prepare the IVD medium by adding 10 ml B-27 Supplement (50X), 5 ml GlutaMAX-I (100X), and 5 ml PEST to 500 ml of Advanced RPMI 1640. Mix the solution properly and carefully. The medium expires one month after the date of preparation.

Preparing the seeding medium

Prepare the seeding medium by adding Y27632 (to a final concentration 5 µM) to the IVD medium. Prepare fresh medium on the day of intended use.

Formation of spin EBs

  1. Warm the seeding medium to 37°C ± 1°C and all other reagents to room temperature (RT, 15–25°C) before use.
  2. Wash one T25 flask containing confluent hPSCs with 5 ml D-PBS –/–.

    NOTE: The entirety of this flask will be used for spin EB formation. Ensure other flasks or banked cells of equivalent passage number exist in order to preserve the original line.

  3. Add 500 µl of TrypLE Select (20 µl/cm2) and place the cells in an incubator at 37°C ± 1°C, 5% CO2, and >90% humidity for 5 min, or until cells start to detach.
  4. Add 5 ml of seeding medium and dissociate the cells, pipetting up and down until a single-cell suspension is achieved.
  5. Count the cells to determine the initial cell concentration.
  6. Make a cell suspension of 20 ml seeding medium containing 2.5 x 105 cells/ml.
  7. Seed 200 µl of the final cell suspension into each well of a 96-well plate (non-treated, V bottom), generating a seeding density of 5 x 104 cells/well.
  8. Centrifuge at 400g at RT for 5 min.
  9. Place the 96-well plate in the incubator at 37°C ± 1°C, 5% CO2, and >90% humidity and let it sit undisturbed for 7 days to form EBs.

    NOTE: Throughout this process, the cells are undergoing spontaneous differentiation. During the incubation period, directed differentiation protocols can be optimized and applied. Alternatively, if pluripotency is to be assessed, continue to the next section.

Spontaneous differentiation of spin EBs

Coating of the cell culture plate

  1. Dilute the required volume of DEF-CS COAT-1 in D-PBS +/+ before use. Make a 1:20 dilution.
  2. Mix the diluted DEF-CS COAT-1 solution gently and thoroughly by pipetting up and down.
  3. Add the appropriate volume of diluted DEF-CS COAT-1 solution to a 24-well plate (use 0.2 ml/cm2); make sure the entire culture surface is covered.
  4. Place the plate for a minimum of 20 min in an incubator at 37°C ± 1°C, 5% CO2, and >90% humidity or 0.5–3 hr at RT.
  5. Aspirate DEF-CS COAT-1 solution from plate immediately before use.

Transferring of spin EBs

  1. Warm IVD medium to 37°C ± 1°C.
  2. Add 1.5 ml of fresh, warm IVD medium to each well of the coated 24-well plate.
  3. Carefully detach and transfer the EBs using a pipette. Transfer 5–7 EBs to each well of the 24-well plate.
  4. Place the 24-well plate in the incubator at 37°C ± 1°C, 5% CO2, and >90% humidity and let it sit undisturbed for 4 days.

Exchanging the media

NOTE: Complete a 100% media change every 2–3 days.

  1. Warm IVD medium to 37°C ± 1°C.
  2. Completely exchange the media in each well of the 24-well plate (1.5 ml/well).

    NOTE: 18–21 days after the start of spin EB formation, the cells are ready to be analyzed for the presence of specialized cells along the three germ layers. The number of days needed depends on the cell line.

Related products

Cat. # Product Size Price License Quantity Details
Y30010 Cellartis® DEF-CS™ 500 Culture System 1 Kit USD $495.00

License Statement

ID Number  
C001 This product is manufactured and sold by Takara Bio Europe AB based on a commercial license to certain intellectual property rights held by Wisconsin Alumni Research Foundation (“WARF”). This product and its use are covered by one or more claims of patents owned by WARF, including U.S. Patent Nos. 7,514,260, 7,439,064, 7,005,252, 7,217,569 and their foreign counterparts. The purchase of this product conveys to the buyer the non-transferable right to use the product for its intended use, strictly limited to purchaser’s own internal research. No other express or implied license is granted to the purchaser. Purchaser cannot have any right to use this product or its components in humans for any purposes including but not limited to diagnostics and/or therapeutics, or otherwise clinical trials. Purchase does not include any right to resell or transfer this product to a third party regardless of whether or not compensation is received. Purchasers wishing to use this product for purposes other than internal research use should contact us.

Cellartis DEF-CS 500 Culture System is a defined culture system for efficient expansion of undifferentiated human pluripotent stem cells. This kit includes basal medium, coating substrate, and additives.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Expansion potential of a characterized working bank of human induced pluripotent stem (iPS) cells in the Cellartis DEF-CS Culture System

Expansion potential of a characterized working bank of human induced pluripotent stem (iPS) cells in the Cellartis DEF-CS Culture System
Expansion potential of a characterized working bank of human induced pluripotent stem (iPS) cells in the Cellartis DEF-CS Culture System. The Cellartis DEF-CS Culture System can produce 2 x 109 human iPS cells within 4 passages (18–20 days) from frozen cells (2.0–2.5 x 106 cells).

Back

Robust growth of human induced pluripotent stem (iPS) cells in the Cellartis DEF-CS Culture System

Robust growth of human induced pluripotent stem (iPS) cells in the Cellartis DEF-CS Culture System
Robust growth of human induced pluripotent stem (iPS) cells in the Cellartis DEF-CS Culture System. The number of iPS cells was quantified after being cultured for three weeks using either the Cellartis DEF-CS Culture System, a reference feeder system, or four other stem cell culture systems.

Back

Human induced pluripotent stem cells (iPS) cells grown in the Cellartis DEF-CS Culture System have the highest proportion and intensity of markers of pluripotency

Human induced pluripotent stem cells (iPS) cells grown in the Cellartis DEF-CS Culture System have the highest proportion and intensity of markers of pluripotency
Human induced pluripotent stem cells (iPS) cells grown in the Cellartis DEF-CS Culture System have the highest proportion and intensity of markers of pluripotency. Quantitative analysis of TRA1-60 (Panel A) and SSEA4 (Panel B) expression was performed on human iPS cells after five weeks culture in either the Cellartis DEF-CS Culture System, a reference feeder cell containing system, or four different stem cell culture systems.

Back

Human iPS cells grown in the Cellartis DEF-CS Culture System look different from those grown with traditional aggregate culture techniques

Human iPS cells grown in the Cellartis DEF-CS Culture System look different from those grown with traditional aggregate culture techniques
Human iPS cells grown in the Cellartis DEF-CS Culture System look different from those grown with traditional aggregate culture techniques. Freshly passaged human iPS cells were cultured for 5 days in either the Cellartis DEF-CS Culture System, on feeder cells, in mTeSR 1 medium (STEMCELL Technologies), or in Essential 8 Medium (E8; Life Technologies).

Back

Human induced pluripotent stem (iPS) cells cultured long-term in the Cellartis DEF-CS Culture System retain a normal karyotype

Human induced pluripotent stem (iPS) cells cultured long-term in the Cellartis DEF-CS Culture System retain a normal karyotype
Human induced pluripotent stem (iPS) cells cultured long-term in the Cellartis DEF-CS Culture System retain a normal karyotype. The human iPS cell line ChiPSC18 was cultured for 20 passages in the Cellartis DEF-CS Culture System. Chromosomal analysis indicates that the cells retain a normal karyotype.

Back

Human induced pluripotent stem (iPS) cells can be passaged as single cells in the Cellartis DEF-CS Culture System

Human induced pluripotent stem (iPS) cells can be passaged as single cells in the Cellartis DEF-CS Culture System

Human induced pluripotent stem (iPS) cells can be passaged as single cells in the Cellartis DEF-CS Culture System. A single GFP-actin iPS cell was isolated and placed in the well of a culture dish. Twenty-four hours after seeding, morphology was assessed by fluorescence microscopy at 20x (Panel A) and 40x (Panel B) magnification. Sixteen days later, the single GFP-actin iPS cell had proliferated into numerous cells as evidenced by microscopic observation at 4x (Panel C), 10x (Panel D), 20x (Panel E), and 40x (Panel F) magnification.

Back

Human pluripotent stem cells remain undifferentiated when cultured in the Cellartis DEF-CS Culture System

Human pluripotent stem cells remain undifferentiated when cultured in the Cellartis DEF-CS Culture System

Human pluripotent stem cells remain undifferentiated when cultured in the Cellartis DEF-CS Culture System. Human iPS cells cultured for 23 passages in the Cellartis DEF-CS Culture System were characterized by Oct-4 staining (Panel A) and nuclear staining (Panel B).


User-generated protocols

User-generated protocols

User-generated protocols are based on internal proof-of-concept experiments, customer collaborations, and published literature. In some cases, relevant results are discussed in our research news BioView blog articles. While we expect these protocols to be successful in your hands, they may not be fully reviewed or optimized. We encourage you to contact us or refer to the published literature for more information about these user-generated and -reported protocols. 

If you are looking for a product-specific, fully optimized User Manual or Protocol-At-A-Glance, please visit the product's product page, open the item's product details row in the price table, and click Documents. More detailed instructions for locating documents are available on our website FAQs page.

Questions? Protocols of your own that you would like to share?

Contact technical support Give feedback

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2020 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
  • Corporate development
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2021 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Drug discovery
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Immune profiling
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Publications
  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • ICELL8 system and software
  • Apollo system
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Whole genome amplification
  • Immune profiling
  • Bioinformatics tools
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Cell biology assays
  • Extracellular vesicle isolation
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Signal transduction
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • GoStix Plus special offers
  • PCR samples
Vaccine development

Vaccine development

The rapid spread of severe infections by viruses such as SARS-CoV-2, HIV, H1N1, Ebola, and Zika has highlighted the critical need for the rapid development of vaccines against previously unknown pathogens to deal with pandemics such as COVID-19 effectively.

Takara Bio is proud to be on the front line in the fight to defeat the novel coronavirus by enabling innovative vaccine development. This section discusses tools and techniques to overcome the challenges faced during the vaccine development process.

Learn how our products help speed up vaccine development

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Apollo library prep system introduction
  • Next-generation sequencing
  • Product line overview
  • Technical notes
  • FAQs and tips
  • Bioinformatics resources
  • Newsletters
  • Webinars
  • Citations
  • Posters
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Overview
  • Technical notes
  • FAQs
  • Stem cell research
  • Protocols
  • Applications
  • Technical notes
  • Webinars
  • Videos
  • Citations
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • Automated DNA and RNA purification
  • RNA purification
  • Hard-to-lyse samples
  • cDNA synthesis
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Cloning
  • In-Fusion Cloning: general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and tech notes
  • Cell biology assays
  • Extracellular vesicle isolation
  • Technical notes
  • FAQs
  • Citations
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Protein research
  • Capturem technology
  • Antibody purification
  • His-tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Antibodies and ELISA
Capturem Trypsin for a rapid, efficient mass spectometry workflow at room temperature.

Speed up your mass spec workflow

Capturem Trypsin provides rapid, efficient, and complete digestion of protein samples, allowing an uninterrupted mass spectometry workflow at room temperature for downstream protein analysis. This product utilizes our novel Capturem technology in a spin column format with membrane-immobilized trypsin. Capturem Trypsin Columns may be used to completely digest protein samples in less than a minute with digestion efficiencies (protein coverage) comparable to or better than those obtained using in-solution trypsin digestion.

Capturem trypsin technology

  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Corporate development
  • Partnering & OEM solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Webinars
  • NGS: biomarkers and oncology
  • NGS: immunology
  • Stem cells
  • Real-time PCR
  • Gene function
  • Protein science
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

Learn more

  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Website FAQs
Best-in-class products, expert support, superior value

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • COVID-19 research
  • Drug discovery
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Immune profiling
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Publications
  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • ICELL8 system and software
  • Apollo system
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Whole genome amplification
  • Immune profiling
  • Epigenetics and small RNA sequencing
  • NGS accessories
  • Bioinformatics tools
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • ProteoTuner protein control systems
  • iDimerize inducible protein interaction systems
  • Transfection reagents
  • Mammalian expression plasmids
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Accessories
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Expression vectors & systems
  • Glycobiology
  • Antibodies and immunoprecipitation
  • SDS-PAGE & western blotting
  • Protein sequencing
  • Accessory enzymes
  • PCR
  • Most popular polymerases
  • Standard PCR
  • High-yield PCR
  • High-fidelity PCR
  • Fast PCR
  • Long-range PCR
  • GC rich PCR
  • Direct PCR
  • PCR master mixes
  • Custom business friendly and automation-ready solutions
  • Molecular diagnostic products
  • GMP-grade products
  • Application-specific PCR
  • Other PCR-related products
  • PCR thermal cyclers
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Mutagenesis kits
  • Ligation enzymes
  • Restriction enzymes
  • Modifying enzymes
  • X-Gal and IPTG
  • Linkers, primers, and cloning vectors
  • Agarose gel electrophoresis
  • Nucleic acid extraction
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • RNA cleanup kits
  • Viral DNA and RNA purification kits
  • Accessories and components
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Secondary antibodies
  • Antibody and ELISA accessories
  • Fluorescent protein antibodies
  • Cell biology assays
  • Extracellular vesicle isolation
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Cell biology reagents
  • RNA interference
  • Cell-culture accessories
  • Signal transduction
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • Real-time PCR primer sets
  • References and standards for qPCR
  • RNA extraction and analysis for real-time qPCR
  • Application-specific qPCR
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • cDNA synthesis accessories
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Apollo library prep system introduction
  • Next-generation sequencing
  • Product line overview
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Newsletters
  • Webinars
  • Citations
  • Posters
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Stem cell research
  • Protocols
  • Applications
  • Technical notes
  • Posters
  • Webinars
  • Videos
  • FAQs
  • Citations
  • Selection guides
  • Overview
  • Protein research
  • Capturem technology
  • Antibody purification
  • His-tag purification
  • Other tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Expression systems
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Go green with lyophilized enzymes
  • LA PCR technology
  • Cloning
  • In-Fusion Cloning: general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and tech notes
  • Sign up to stay updated
  • Traditional molecular cloning
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • Parallel DNA, RNA & protein
  • Automated DNA and RNA purification
  • RNA purification
  • Hard-to-lyse samples
  • Antibodies and ELISA
  • Osteocalcin focus
  • Cell biology assays
  • Extracellular vesicle isolation
  • Technical notes
  • FAQs
  • Citations
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Overview
  • Technical notes
  • FAQs
  • cDNA synthesis
  • Premium total and poly A+ RNA
  • SMARTer RACE 5'/3' Kit—advances in SMARTer PCR cDNA synthesis
  • Cloning antibody variable regions
  • Services & Support
  • Instrument services
  • OEM & custom enzyme manufacturing
  • Stem cell services
  • Gene and cell therapy manufacturing services
  • Customer service
  • Technical support
  • Sales
  • Shipping & delivery
  • Feedback
  • Corporate development
  • Webinars from Takara Bio
  • Vector information
  • Online tools
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Corporate development
  • Partnering & OEM solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Webinars from Takara Bio
  • NGS: biomarkers and oncology
  • NGS: immunology
  • Stem cells
  • Real-time PCR
  • Gene function
  • Protein science
  • Vector information
  • Vector document overview
  • Vector document finder
  • Online tools
  • GoStix Plus FAQs
  • Areas of interest
  • Pathogen detection
  • Vaccine development
  • Cancer research
  • Immunotherapy research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • DSS Takara Bio India Pvt. Ltd : Manufacturing
  • Our partners
  • Special offers
  • New products
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Calendar
  • Conferences
  • Speak with us
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Special offers
  • RT-qPCR bundle promotion
  • GoStix Plus special offers
  • PCR samples
  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About