We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Gene editing in hiPS cells
  • Tagging an endogenous gene with AcGFP1 in hiPS cells
  • Tagging an endogenous gene with a myc tag in hiPS cells
  • Generating clonal hiPS cell lines deficient in CD81
  • Introducing a tyrosinemia-related SNP in hiPS cells
  • Inserting an expression cassette into the AAVS1 locus in hiPS cells
  • Editing hiPS cells using electroporation
  • Editing hiPS cells using gesicle technology
  • Single-cell cloning of hiPS cells
Home › Learning centers › Stem cell research › Technical notes › Gene editing in hiPS cells › Introducing a tyrosinemia-related SNP in hiPS cells

Technical notes

  • Pluripotent stem cells
    • Using the DEF-CS system to culture human iPS cells
    • Comparison of the Cellartis DEF-CS system with other vendors' human iPS cell culture systems
    • Reprogramming PBMCs
    • Reprogramming fibroblasts
  • Gene editing in hiPS cells
    • Tagging an endogenous gene with AcGFP1 in hiPS cells
    • Tagging an endogenous gene with a myc tag in hiPS cells
    • Generating clonal hiPS cell lines deficient in CD81
    • Introducing a tyrosinemia-related SNP in hiPS cells
    • Inserting an expression cassette into the AAVS1 locus in hiPS cells
    • Editing hiPS cells using electroporation
    • Editing hiPS cells using gesicle technology
    • Single-cell cloning of hiPS cells
  • Organoids
    • Retinal organoid differentiation from iPSCs cultured in the Cellartis DEF-CS 500 Culture System
    • Liver organoid differentiation from iPSCs for prediction of drug-induced liver injury
    • Generation of embryonic organoids using NDiff 227 neural differentiation medium
  • Beta cells
    • Beta cells for disease modeling
  • Hepatocytes
    • hiPS-HEP cells for disease modeling
    • hiPS-HEP cells for drug metabolism studies
    • Power medium for long-term human primary hepatocyte culture
    • iPS cell to hepatocyte differentiation system
  • Cardiomyocytes
    • Making engineered heart tissue with cardiomyocytes
  • Neural stem cells
    • RHB-A neural stem cell medium
New products
Need help?
Contact Sales
Case Study

Introducing a tyrosinemia-related SNP in hiPS cells

One of the most powerful applications of genome editing is the introduction of precise changes at specific sites, which exploits the homology-directed repair (HDR) pathway in mammalian cells. The editing events could range from the insertion of long sequences encoding fusion tags or expression cassettes to single base changes that mimic single-nucleotide polymorphisms (SNPs) related to human diseases. The use of human induced pluripotent stem cells (hiPSCs) to create isogenic cell lines from either healthy or sick individuals offers the unique potential to study how a specific genetic modification can influence gene function. First, hiPS cells can be generated from a healthy individual and differentiated into the desired cell type. Then, the healthy hiPS cell population can be edited to insert a known or potential disease-relevant mutation and expanded clonally to create an isogenic cell line that only differs from the healthy cells by the introduced mutation. Alternatively, a diseased hiPS cell line can be generated from a sick individual, and gene editing can be used to correct the mutation for the development of therapeutic applications. These edited hiPS cell lines are renewable sources of diseased and healthy cells that are controlled for genetic variability, and they can be used for a variety of downstream applications to study and treat disease. Here, we describe our workflow for the introduction of a disease-related SNP into an endogenous gene.

Schematic for the generation of disease models

Experimental workflow sgRNA and ssDNA design Analysis and characterization Differentiation of edited cells to hepatocytes Conclusions

Experimental workflow  

Our workflow for the introduction of a tyrosinemia-related SNP c.786G>A (p.Trp262Ter) into the FAH (fumarylacetoacetate hydrolase) gene began with hiPS cells cultured in our Cellartis DEF-CS 500 Culture System, which provided a homogeneous, undifferentiated starting population. We used electroporation to deliver Cas9-sgRNA together with the HDR template, an ssDNA donor template of 200 nucleotides in length encoding the SNP of interest. We delivered the Cas9-sgRNA complex in the form of ribonucleoprotein (RNP) in order to decrease off-target effects and for footprint-free genome editing. Following electroporation, we screened the population of edited hiPS cells using our own SNP detection system. Single cells were seeded and expanded to generate clonal cell lines, and the lines were screened to identify clones with the desired c.786G>A substitution. No preselection was required prior to screening. We then used our efficient hepatocyte differentiation protocol to generate functional hepatocytes.

Workflow for knocking in disease-related SNPs

sgRNA and ssDNA design  

A good experimental design is crucial for efficient and successful gene editing. We used our Guide-it sgRNA In Vitro Transcription Kit to synthesize sgRNAs with an optimized scaffold sequence to enhance binding to Cas9 and to form a more stable complex. For this project, we selected two sgRNAs with cut sites that were close to the base we wanted to modify (in exon 10 of the FAH gene). We tested both sgRNAs independently. For the HDR template, we used a short oligonucleotide encoding the SNP with 99-nucleotide homology arms related to the insertion site. The Cas9-sgRNA RNP complex (prepared by co-incubating Guide-it Recombinant Cas9 and in vitro-transcribed sgRNA) and ssDNA donor were introduced to the hiPS cells via electroporation.

Design of the CRISPR constructs

Analysis and characterization  

Following gene editing, we used our Guide-it SNP Screening Kit to determine which of the two sgRNAs generated a higher level of knockin. The fluorescent signal is proportional to editing events at the target site and indicates the introduction of the SNP. Analysis of the overall edited population of hiPS cells showed that cells edited with sgRNA 1 had the desired SNP, as indicated by the fluorescent signal above the background.

SNP screening system detected the desired SNP

Since the desired SNP was detected in the pool of cells edited with sgRNA 1, cells from this population were individually seeded using limiting dilution, and then expanded into edited clonal cell lines using our DEF-CS single-cell cloning system. Forty-five days after seeding, clonal cell lines were interrogated for the c.786G>A SNP using our fluorescence-based SNP screening system, which allowed us to rapidly and accurately screen a large number of clones in a 96-well format. Approximately 19% of the clonal cell lines generated a positive fluorescent signal, indicating insertion of the SNP. Nonclonal samples are marked with an asterisk.

Screening for SNPs in FAH gene in clonal cell lines

We further characterized the positive clonal cell lines via Sanger sequencing and flow cytometry. We used the Guide-it Indel Identification Kit followed by Sanger sequencing to determine if positive clones were homozygous or heterozygous for the SNP. Several clonal cell lines that were homozygous for the SNP were further expanded in our culture system, and their pluripotency was checked by flow cytometry using Oct-4, TRA-1-60, and SSEA-4 as markers. All clonal cell lines exhibited high levels of the three markers, indicating that the clonal hiPS cell lines maintained pluripotency following genome editing.

Sequencing confirmation of SNPs in the FAH gene and checking for pluripotency markers in clonal cells

Differentiation of edited cells to hepatocytes  

Since tyrosinemia is a liver disorder, we wanted to differentiate the edited cells into a suitable cell type for studying the disorder. Using the Cellartis iPS Cell to Hepatocyte Differentiation System, we differentiated clonal cell line #181 into hepatocytes. On Day 22 after the start of differentiation, both control and edited hiPSC-derived hepatocytes displayed a typical hepatocyte morphology. Immunostaining on Day 29 for the hepatic marker HNFα showed that, on average, >92% of the cells from each line were HNFα-positive, indicating a high differentiation efficiency.

Immunostaining of edited cells shows expression of HNFα, an early hepatic marker

Drug metabolism is a central hepatocyte function. A critical metric for hepatocyte functionality is the expression and activity of drug metabolizing enzymes in the cytochrome P450 (CYP) family. On Day 29 after the start of differentiation, we measured the activities of key CYP enzymes by LC/MS. Both control and edited cell lines showed CYP1A, CYP3A, CYP2C9, CYP2B6, and CYP2D6 activities, which are responsible for 80–90% of clinical drug metabolism.

CYP1A, CYP3A, CYP2C9, CYP2B6, CYP2D6, and CYP2C19 activity in both control and edited cell lines

Conclusions  

We have developed a complete workflow for knocking in disease-related SNPs. Our workflow starts with footprint-free CRISPR/Cas9-mediated editing, followed by SNP screening of the edited pool of cells, single-cell cloning of the edited population, and rapid screening of expanded clonal cell lines to identify positive clones. We have demonstrated that we can generate multiple clonal cell lines that have the desired tyrosinemia-related SNP, maintain pluripotency, and retain a normal karyotype. Using our hepatocyte differentiation protocol, we further showed that an edited cell line could be differentiated into hepatocytes to provide a relevant model for studying tyrosinemia.

We are now an approved supplier on scientist.com

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us