We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Technical notes
  • Rapid, high-performance multiplex PCR
  • EmeraldAmp outperforms MyTaq Red mix
  • Fast and accurate PCR
  • Methylation studies
  • Hot-start PCR
  • Long-range PCR with LA Taq
  • Direct PCR from human nail
  • Direct PCR from meat samples
  • Megaprimer PCR with PrimeSTAR GXL
  • Amplifying GC-rich templates
  • Titanium Taq for high-throughput genotyping
  • Colony PCR in under an hour
  • High-throughput endpoint PCR
  • Direct PCR from blood
  • PrimeSTAR GXL for targeted sequencing
  • Detecting somatic mosaicism using massively parallel sequencing
Product page: PrimeSTAR GXL polymerase PrimeSTAR GXL polymerase, research use
Home › Learning centers › PCR › Technical notes › Detecting somatic mosaicism using massively parallel sequencing

PCR

  • Citations
    • PrimeSTAR HS
    • EmeraldAmp MAX
    • Terra PCR Direct
    • EmeraldAmp GT
    • Takara Ex Taq
    • PrimeSTAR Max
    • PrimeSTAR GXL
    • Takara LA Taq
    • SpeedSTAR HS
    • Takara Taq and Taq HS
    • Titanium Taq
  • PCR selection guide
  • PCR enzyme brochure
  • Technical notes
    • Rapid, high-performance multiplex PCR
    • EmeraldAmp outperforms MyTaq Red mix
    • Fast and accurate PCR
    • Methylation studies
    • Hot-start PCR
    • Long-range PCR with LA Taq
    • Direct PCR from human nail
    • Direct PCR from meat samples
    • Megaprimer PCR with PrimeSTAR GXL
    • Amplifying GC-rich templates
    • Titanium Taq for high-throughput genotyping
    • Colony PCR in under an hour
    • High-throughput endpoint PCR
    • Direct PCR from blood
    • PrimeSTAR GXL for targeted sequencing
    • Detecting somatic mosaicism using massively parallel sequencing
  • FAQ
    • Primer design
    • Optimization
    • Troubleshooting
    • Applications and conditions
    • Shipping, storage, and handling
  • Go green with lyophilized enzymes
New products
Need help?
Contact Sales
Product page: PrimeSTAR GXL polymerase PrimeSTAR GXL polymerase, research use
Case Studies

Detecting somatic mosaicism using massively parallel sequencing

Introduction Discussion Conclusions Methods References

Introduction  

A rite of passage for many new parents is to discover with dismay that their new baby has suddenly developed some mysterious rash. Newborn skin is a delicate thing indeed. First-time moms and dads are may be surprised to find that infant complexion can spontaneously erupt in bumps punctuated with varying shades of red, white, brown, yellow, or pink hues. Many times the rash disappears as quickly as it came, brought on by something as simple as laundry detergent, the normal fluctuations of hormones in newborn babies, heat, or skin irritation from diapers.

In one out of a million babies, though, the rash isn't innocuous. It's a harbinger of Neonatal-Onset Multisystem Inflammatory Disease (NOMID), also referred to as Chronic Infantile Neurologic Cutaneous and Articular syndrome (CINCA).

Discussion  

What is NOMID?

NOMID is at the most severe end of the spectrum of a family of diseases referred to as Cryopyrin-Associated Periodic Syndromes (CAPS). All of the CAPS conditions involve mutations in NLRP3, which encodes cryopryin. Cyropyrin is a NOD-like receptor that is a critical element of the body's innate immune response against infectious agents present in the environment. This receptor oligimerizes and interacts with ASC and pro-caspase-1 to form inflammasomes that affect production of Interleukin 1-beta (IL-1beta). IL-1beta in turn mediates the inflammatoryNLRP3 inflammasome responses that the body uses to defend itself.

In most individuals, the inflammatory response is only mounted on an as-needed basis because cyropyrin assembly into inflammasomes is triggered by signals such microbial molecules referred to as PAMPs. However, in NOMID and other CAPS diseases, this regulation is lost. The inflammatory system flares up repeatedly, causing chronic bouts of rash, fever, headaches, and joint pain. NOMID, an autosomal dominant disease, is the most profound of the CAPS conditions. In NOMID, the inflammatory response occurs over and over again in continuous, unrelenting surges. The toll is devastating: chronic aseptic meningitis due to inflammation in tissues surrounding the brain, vision problems due to high intercranial pressure on the optical nerves, joint problems, sensiorineural hearing loss, the buildup of insoluble forms of protein in tissues and organs (amyloidosis), and mental or cognitive impairment. The mortality rate is 20%. Recently, however, some success has emerged through treatment with IL-1beta blocking drugs, which—if administered early enough—may mitigate progression of NOMID (although not without side effects). For this reason, early detection is critical.

NLRP3 somatic mosaicism: finding the needle in the haystack

But therein lies an extraordinarily complex problem: 60% of NOMID patients are relatively easy to assess using molecular genetic assays because they have germline mutations in NLRP3. For the other 40%, however, NLRP3 mutations are non-germline. This latter group of patients exhibits somatic mosaicism, and detection of mutant alleles in samples is the literal equivalent of trying to find a needle in a haystack. Mutant allele frequency may be as low as 1%, with mosaicism typically ranging between 4.2 to 35.8%. Such patients may be referred to as "mutation-negative NOMID" individuals because—despite presence of clinical symptoms of NOMID—the level of mutant allele copies is below the limit of detection by conventional means. In an attempt to definitively analyze such cases, researchers have resorted to sequencing hundreds of individual subclones from a single patient—a labor-intensive, expensive, and time consuming process that leaves much room for improvement.

Conclusions  

Bringing clarity to ambiguous cases

So how well did the method work? When the technique was used for samples from 10 different mutation-negative NOMID patients, somatic mosaicism was identified in four out of 10. One of the mutations that was identified (p.Phe302Leu) was novel, and was confirmed to be pathogenic through two different cell-based assays.

The authors concluded that "...read depth of approximately 350 for each strand of each amplicon would be sufficient to detect somatic mosaicism as low as 1% with statistical confidence," in theory allowing up to 100 patient samples to be analyzed on a single 454 GS-FLX over approximately 10 hours.

More than NOMID

Importantly, the study impact isn't limited to NOMID/CINCA, but may have implications for other situations in which low-frequency somatic mosaicism plays a role, such as analysis of tumors. Additionally, the Izawa et al. research was cited by scientists investigating somatic alpha-synuclein mutations in Parkinson's disease (Proukakis et al. 2013). Should methods such as these shed light on previously intractable molecular analyses, it would have the potential to spread hope to some of the most difficult biomedical problems currently faced by translational medicine researchers, clinicians, and patients.

Methods  

Massively parallel sequencing to analyze somatic mosaicism

Improvement came in the form of a publication (Izawa et al. 2012) by researchers at the Kyoto University Graduate School of Medicine, the RIKEN Research Center for Allergy and Immunology in Yokohama, the Center for iPS Cell Research and Application at Kyoto University, the Translational Autoinflammatory Disease Section at the NIH, and Kazusa DNA Research Institute in Chiba, Japan. A multi-disciplinary team of scientists including co-first authors Kazushi Izawa and Atsushi Hijikata and co-corresponding authors Ryuta Nishikomori and Osamu Ohara decided to apply next-generation sequencing techniques to the problem of analyzing "mutation-negative NOMID" patient. The major concern, however, was whether the presence of a low-level allele could be discerned with statistical significance among the noise inherent in NGS data.

So the authors started by constructing error rate maps of 14 PCR products covering the entire NLRP3 coding region. Their data set included approximately 1 million reads from 50 control samples thought to be free of somatic mosaicism. This allowed them to analyze patterns of sequencing errors during massively parallel sequencing (MPS) with a Roche 454-FLX sequencer, and adjust for nucleotide position- and DNA strand-specific error rates when assessing mutation-negative NOMID patient MPS data. Articulating the error rate map was critical, because it made a discrimination pipeline for somatic mosaicism determination possible. To generate the data, the authors used a two-step PCR assay and pooled sample libraries for MPS. NLRP3 coding exonic regions and flanking intronic regions were covered by 14 amplicons that were designed to be as long as an average read length for a Roche 454 GS-FLX sequencer (up to 450 bases) and were amplified from each genomic DNA sample using PrimeSTAR GXL DNA Polymerase. The second round of PCR amplification, again performed with PrimeSTAR GXL enzyme, added 3' adaptor sequences and 5' Multiplex Identifier (MID) tags, then samples were applied to a Roche 454 Genome Sequencer (GS)-FLX system, amplified by emPCR, and sequenced in multiplex.

References  

Izawa, et al., Detection of base substitution- type somatic mosaicism of the NLRP3 gene with >99.9% statistical confidence by massively parallel sequencing. DNA Res. 19(2):143–152 (2012).

Proukakis, et al., Somatic alpha-synuclein mutations in Parkinson's disease: Hypothesis and preliminary data. Mov. Disord., 28:705–712 (2013).

NOMID Alliance

Related Products

Cat. # Product Size Price License Quantity Details
R050A PrimeSTAR® GXL DNA Polymerase 250 Units USD $283.00

A hot-start, high-fidelity PCR enzyme, PrimeSTAR GXL DNA Polymerase excels in reactions with GC-rich templates, excess template, and long amplicons up to 30 kb (GXL). The polymerase is supplied with separate tubes of optimized buffer (Mg2+ plus), and dNTPs.

Also available as a premix.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases

Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases
Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases. Company T’s enzyme includes buffers optimized for GC-rich templates.

Back

PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA)

PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA)
PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA).

Back

PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases

PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases
PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases.

Back

R050A: PrimeSTAR GXL DNA Polymerase

R050A: PrimeSTAR GXL DNA Polymerase
R050B PrimeSTAR® GXL DNA Polymerase 1,000 Units USD $892.00

A hot-start, high-fidelity PCR enzyme, PrimeSTAR GXL DNA Polymerase excels in reactions with GC-rich templates, excess template, and long amplicons up to 30 kb (GXL). The polymerase is supplied with separate tubes of optimized buffer (Mg2+ plus), and dNTPs. Cat. # R050B contains 4 of Cat. # R050A. Please refer to Cat. # R050A for complete product documentation and resources.

Also available as a premix.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents You May Also Like Image Data

Back

Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases

Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases
Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases. Company T’s enzyme includes buffers optimized for GC-rich templates.

Back

PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA)

PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA)
PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA).

Back

PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases

PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases
PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases.

Back

R050B: PrimeSTAR GXL DNA Polymerase

R050B: PrimeSTAR GXL DNA Polymerase


pcr success PCR learning center
Selection guides PCR selection guide
Citations All PCR citations

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us