We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Immune Profiling
  • Automation systems
  • Next-generation sequencing
    • Product line overview
    • RNA-seq
    • Technical notes
    • Technology and application overviews
    • FAQs and tips
    • DNA-seq protocols
    • Bioinformatics resources
    • Webinars
    • Posters
  • Spatial biology
  • mRNA and cDNA synthesis
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Real-time PCR
Visit the product page
Home › Learning centers › Next-generation sequencing › Technical notes › Immune Profiling › TCR repertoire profiling from human samples (bulk)

Learning centers

  • Automation systems
    • Shasta Single Cell System introduction
      • Biomarker and drug discovery
      • Shasta educational library
    • SmartChip Real-Time PCR System introduction
      • SmartChip Real-Time PCR System applications
        • Pathogen detection in human samples and food
          • Pathogen detection from UTI, STI and wound infections
          • High-throughput detection of SARS-CoV-2
        • Antibiotic resistance genes
          • Screening for antibiotic resistance genes in manure and sewage
          • Uncovering antibiotic resistance genes in soil, sediment, and sludge
          • Tracking down antibiotic resistance genes in hospitals
          • Identifying antibiotic resistance genes in water
        • mRNA, miRNA, and lncRNA as disease biomarkers
        • Genotyping using animal and blood samples
      • SmartChip Real-Time PCR System video resources
        • Webinar: Monitoring ARGs in environmental samples
        • Webinar: antibiotic resistance screening
        • SmartChip tutorials
    • ICELL8 introduction
      • ICELL8 cx applications
        • Archival nanowell sequencing
      • ICELL8 technology overview
      • ICELL8 cx technical specifications
      • ICELL8 technical specifications (original system)
      • ICELL8 system vs plate-seq
      • Webinars
        • Webinar: Leveraging single-cell transcriptomics and epigenomics for biomarker discovery
        • Advances in single-cell indexing registration
        • Single-Cell Workshop at 2020 NextGen Omics Series UK
        • The power of full-length scRNA-seq
        • Sign up: cardiomyocyte webinar
      • Technical notes
        • Enhancing biomarker discovery with SMART-Seq Pro kit and ICELL8 cx system
        • ICELL8 cx system target enrichment for fusions
        • ICELL8 cx system reagent formulation and dispense guidelines
        • Improved detection of gene fusions, SNPs, and alternative splicing
        • Full-length transcriptome analysis
        • High-throughput single-cell ATAC-seq
        • Protocol: High-throughput single-cell ATAC-Seq
        • Single-cell identification with CellSelect Software
        • Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs
        • Combined TCR profiling and 5’ DE in single cells
        • Automated, high-throughput TCR profiling
      • Sample preparation protocols
        • Basic cell preparation for the ICELL8 cx system
        • Protocol: Nuclei isolation from mammalian cells
        • Protocol: Mouse cardiomyocyte preparation
        • Isolate cells of any size
      • Video resources
      • Citations
      • Posters
      • System & software notices
    • Apollo library prep system introduction
      • Automated VeriSeq library preparation for PGS
      • Apollo library prep system citations
      • SMART-Seq v4 chemistry for the Apollo system
      • Apollo library prep system overview
      • Apollo system technical specifications
      • In-tip bead separation on the Apollo system
  • Next-generation sequencing
    • Product line overview
    • RNA-seq
      • Automated library prep
      • Technologies and applications
        • SMART technology
        • Single-cell mRNA-seq
        • Total RNA-seq
        • SMART-Seq PLUS solutions
      • Technotes
        • Enabling long-read RNA sequencing from low-input samples
        • Singular for low input total RNA seq
        • All-in-one cDNA synthesis and library prep from single cells
        • Automation-friendly, all-in-one cDNA synthesis and library prep
        • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
        • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
        • Full-length mRNA-seq for target capture
        • Stranded libraries from single cells
        • Stranded libraries from picogram-input total RNA (v3)
        • Stranded libraries from 100 pg-100 ng total RNA
        • Stranded libraries from 100 ng - 1 ug total RNA
        • Stranded libraries from FFPE inputs (v2)
        • Nonstranded libraries from FFPE inputs
        • Singular and Takara Bio library prep
        • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
      • Webinars
        • Pushing the limits of sensitivity for single-cell applications
        • Capturing biological complexity by high-resolution single-cell genomics
        • Taking single-cell RNA-seq by STORM
        • STORM-seq Q&A
        • Neural multiomics Q&A
        • Liver metabolic function, dissecting one cell at a time
        • Pushing the limits Q&A
        • Total RNA sequencing of liquid biopsies
        • Liver metabolic function Q&A
        • Automating full-length single-cell RNA-seq libraries
        • Single-cell whole transcriptome analysis
        • Sensitivity and scale for neuron multiomics
      • RNA-seq tips
      • RNA-seq FAQs
    • Technical notes
      • DNA-seq
        • NGS library prep with enzymatic fragmentation
        • Comparing ThruPLEX FLEX EF to Kapa and NEBNext
        • Next-gen WGA method for CNV and SNV detection from single cells
        • Low-input whole-exome sequencing
        • DNA-seq from FFPE samples
        • Low cell number ChIP-seq using ThruPLEX DNA-Seq
        • Detection of low-frequency variants using ThruPLEX Tag-Seq FLEX
        • ThruPLEX FLEX outperforms NEBNext Ultra II
        • Streamlined DNA-seq from challenging samples
        • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
        • ThruPLEX FLEX data sheet
        • Low-volume DNA shearing for ThruPLEX library prep
      • Immune Profiling
        • Track B-cell changes in your mouse model
        • Efficient and sensitive profiling of human B-cell receptor repertoire
        • TCRv2 kit validated for rhesus macaque samples
        • Improved TCR repertoire profiling from mouse samples (bulk)
        • TCR repertoire profiling from mouse samples (bulk)
        • BCR repertoire profiling from mouse samples (bulk)
        • Improved TCR repertoire profiling from human samples (bulk)
        • TCR repertoire profiling from human samples (single cells)
        • BCR repertoire profiling from human samples (bulk)
      • Epigenetic sequencing
        • ChIP-seq libraries for transcription factor analysis
        • ChIP-seq libraries from ssDNA
        • Full-length small RNA libraries
        • Methylated DNA-seq with MBD2
      • Reproductive health technologies
        • Embgenix ESM Screen
        • Embgenix PGT-A
    • Technology and application overviews
      • Embgenix GT-omics Oncology Tech Note
      • Sequencing depth for ThruPLEX Tag-seq
      • Whole genome amplification from single cells
    • FAQs and tips
      • Positive and negative controls in scRNA-seq
      • DNA-seq FAQs
      • ChIP-seq FAQs
      • Indexing FAQs
      • TCR-seq methods: Q&A
    • DNA-seq protocols
      • Using UMIs with ThruPLEX Tag-Seq FLEX
      • Targeted capture with Agilent SureSelectQXT
      • Exome capture with Illumina Nextera Rapid Capture
      • Targeted capture with Roche NimbleGen SeqCap EZ
      • Targeted capture with IDT xGen panels
      • Targeted capture with Agilent SureSelectXT
      • Targeted capture with Agilent SureSelectXT2
    • Bioinformatics resources
      • Cogent NGS Analysis Pipeline
        • Cogent NGS Analysis Pipeline notices
      • Cogent NGS Discovery Software
        • Cogent NGS Discovery Software notices
      • Cogent NGS Immune Profiler
        • Cogent NGS Immune Profiler Software notices
      • Cogent NGS Immune Viewer
      • Embgenix Analysis Software
      • SMART-Seq DE3 Demultiplexer
    • Webinars
      • Harnessing the power of full-length transcriptome analysis for biomarker discoveries
      • SMART-Seq Pro kits for biomarker detection
      • Takara Bio Single-Cell Workshop, Spring 2021
      • Single-Cell Workshop at 2020 NextGen Omics Series UK
      • Immunogenomics to accelerate immunotherapy
      • MeD-Seq, a novel method to detect DNA methylation
      • Single-cell DNA-seq
    • Posters
      • Long-read mRNA-seq poster
  • Spatial biology
  • mRNA and cDNA synthesis
    • mRNA synthesis
      • mRNA synthesis selection guide
      • mRNA synthesis FAQs
      • Takara IVTpro mRNA Synthesis System
        • Cloning Kit for mRNA Template
        • Takara IVTpro T7 mRNA Synthesis Kit
      • 5-prime capping of mRNA
        • Post-transcriptional capping
        • Co-transcriptional capping
      • Download resources
        • Sign up to download our infographic
      • Webinar: Streamlining your IVT workflow to maximize mRNA yields
    • cDNA synthesis
      • Premium total and poly A+ RNA
      • SMARTer RACE 5'/3' Kit
      • Cloning antibody variable regions
  • Gene function
    • Gene editing
      • Gene editing product finder
      • Gene editing tools and information
        • sgRNA design tools
        • Tools for successful CRISPR/Cas9 genome editing
        • Gene editing posters
        • Customer data for Guide-it products
        • How to design sgRNA sequences
        • Introduction to the CRISPR/Cas9 system
        • Gene editing of CD3+ T cells and CD34+ HSCs
      • CRISPR/Cas9 knockouts
        • Mutation detection kit comparison
        • Screening for effective guide RNAs
        • Monoallelic versus biallelic mutants
        • Indel identification kit for mutation characterization
      • CRISPR/Cas9 knockins
        • Choosing an HDR template format
        • Homology-directed repair FAQs
        • Mouse CRISPR knockin protocol
        • Site-specific gene knockins using long ssDNA
        • Efficient CRISPR/Cas9-mediated knockins in iPS cells
        • Oligo design tool for detecting precise insertions
          • Oligo design tool user guide (insertions)
      • Genome-wide screening
        • CRISPR library screening
        • CRISPR library screening webinar
        • Phenotypic screen using sgRNA library system
      • Creating and screening for SNPs
        • SNP detection with knockin screening kit
        • Oligo design tool for SNP screening
          • Oligo design tool user guide (SNPs)
        • Sign up: SNP engineering webinar
        • Guide-it SNP Screening Kit FAQs
      • CRISPR/Cas9 delivery methods
        • Electroporation-grade Cas9 for editing in diverse cell types
        • CRISPR/Cas9 gene editing with AAV
        • CRISPR/Cas9 gesicles overview
        • Cas9 Gesicles—reduced off-target effects
        • sgRNA-Cas9 delivery to many cell types
        • Tet-inducible Cas9 for gene editing
      • Cre recombinase
        • Control your Cre recombinase experiments
        • Fast Cre delivery with gesicle technology
    • Viral transduction
      • Recombinant virus comparison
      • Product finder
      • Transduction posters
      • Lentivirus
        • Webinars
          • Webinar: Cellular reprogramming of cancer cells for immunotherapy
          • Lentiviral particles webinar
        • Customizable SARS-CoV-2 pseudovirus
        • Lenti-X FAQs
        • Lentiviral workflow
        • Lentiviral products guide
        • Lentivirus biosafety
        • Lentiviral tips
        • Lentiviral vectors
        • Lenti-X packaging
        • High-throughput lentivirus production
        • Lenti-X Concentrator
        • Lentiviral titration
        • Lenti-X GoStix Plus video protocols
        • Lenti-X GoStix Plus FAQs
        • Rapid lentivirus titration by p24 ELISA
        • Lentiviral particles
        • Lentiviral particles—fluorescent
        • Lentiviral particles FAQs
      • Retrovirus
        • Retroviral products
        • Retro-X FAQs
        • Retro-X packaging
        • Retro-X Concentrator
      • Adeno-associated virus
        • AAV workflow
        • AAV products
        • AAV FAQs
        • AAV tech notes
          • Customer data: Purified AAV9 delivery (mouse brain)
          • Customer data: Purified AAV9 delivery (songbird brain)
          • Serotype-independent AAV vector purification
          • Customer data: Purified AAV2 delivery (mouse brain)
        • AAV videos
          • AAV2 purification video
          • AAVpro "All Serotypes" protocols
        • AAVpro Concentrator overview
      • Adenovirus
        • Adenoviral FAQs
        • Adenoviral products
        • Fastest, easiest adenoviral system ever
        • Tet-inducible adenovirus
        • Adenovirus purification kits
        • Adenovirus purification mega-scale
        • Adenovirus rapid titer
        • Adenoviral titration
    • T-cell transduction and culture
      • Technology overview
      • Adoptive T-cell therapy (ACT)
      • RetroNectin FAQs
      • Hematopoietic cell transduction
      • T-cell expansion
      • Serum-free T-cell culture
      • CultiLife culture bags protocol
      • Cytokine analysis
    • Inducible systems
      • iDimerize systems
        • Inducible protein-protein interactions—iDimerize systems
        • iDimerize systems journal club
        • iDimerize in vivo protocol
        • iDimerize systems citations
        • ARGENT cell signaling regulation kits from ARIAD
      • ProteoTuner systems
        • ProteoTuner technology overview
        • ProteoTuner citations
        • Inducible protein stabilization systems product selection guide
      • Tet-inducible systems
        • Tet systems product selection guide
        • Tet systems overview
        • Tet-One technology overview
        • Tet-On 3G plasmid system kit components
        • Tet-On 3G lentiviral system kit components
        • Tet system webinars
    • Transfection reagents
      • Xfect Transfection Reagent
      • Transfection tips
      • Cell lines transfected with the Xfect reagent
      • Protein transfection FAQs
      • Xfect RNA Transfection Reagent
      • Transfection reagent products
      • Protocol: transfection of cerebellar slice cultures with Xfect reagent
      • Calcium phosphate transfection of neurons
    • Fluorescent proteins
      • Fluorescent protein vector finder
      • Fluorescent protein excitation and emission maxima
      • Fluorescent protein antibodies selection guide
      • Fluorescent protein antibody citations
        • GFP antibody citations
        • RFP antibody citations
      • Fluorescent protein quick guide
      • Fluorescent retroviral expression vectors
      • Verify miRNA expression
      • Find EGFP vector alternatives
    • Cell biology assays
      • Technical notes
        • Cell viability and proliferation measurement
      • Citations
  • Stem cell research
    • Overview
      • Stem cell research products
      • Stem cell media products
      • Hepatocyte products
      • iPS cell to hepatocyte differentiation overview
    • Protocols
      • Hepatocytes
        • Video protocols for hiPS-HEP v2 cells
        • Getting started with hepatocyte differentiation
      • Pluripotent stem cells
        • Single-cell cloning with DEF-CS 500 Culture System
        • Transferring iPSCs on MEFs to DEF-CS
        • Transferring iPSCs from other media to DEF-CS
        • Spin embryoid body formation
        • Reprogramming PBMCs
        • Reprogramming fibroblasts
      • Cardiomyocytes
        • Cardiomyocytes in FLIPR 384-well plate format
        • Cardiomyocytes on the Patchliner system
        • Cardiomyocytes on the Maestro MEA system
        • Cardiomyocytes on the MED64 MEA system
        • Cardiomyocytes on the CardioExcyte 96 system
        • Cardiomyocytes on the xCELLigence RTCA CardioECR system
    • Applications
    • Technical notes
      • Pluripotent stem cells
        • Using the DEF-CS system to culture human iPS cells
        • Comparison of the Cellartis DEF-CS system with other vendors' human iPS cell culture systems
        • Reprogramming PBMCs
        • Reprogramming fibroblasts
      • Gene editing in hiPS cells
        • Tagging an endogenous gene with AcGFP1 in hiPS cells
        • Tagging an endogenous gene with a myc tag in hiPS cells
        • Generating clonal hiPS cell lines deficient in CD81
        • Introducing a tyrosinemia-related SNP in hiPS cells
        • Inserting an expression cassette into the AAVS1 locus in hiPS cells
        • Editing hiPS cells using electroporation
        • Editing hiPS cells using gesicle technology
        • Single-cell cloning of hiPS cells
      • Organoids
        • Retinal organoid differentiation from iPSCs cultured in the Cellartis DEF-CS 500 Culture System
        • Liver organoid differentiation from iPSCs for prediction of drug-induced liver injury
        • Generation of embryonic organoids using NDiff 227 neural differentiation medium
      • Beta cells
        • Beta cells for disease modeling
      • Hepatocytes
        • hiPS-HEP cells for disease modeling
        • hiPS-HEP cells for drug metabolism studies
        • Power medium for long-term human primary hepatocyte culture
        • iPS cell to hepatocyte differentiation system
      • Cardiomyocytes
        • Making engineered heart tissue with cardiomyocytes
      • Neural stem cells
        • RHB-A neural stem cell medium
    • Posters
    • Webinars
      • Using hiPS gene editing to create a tyrosinemia disease model
    • Videos
      • Hepatocyte offerings
    • FAQs
      • Cellartis DEF-CS 500 Culture System FAQs
      • Cellartis enhanced hiPS-HEP FAQs
      • Cellartis iPS Cell to Hepatocyte Differentiation System FAQs
    • Citations
      • Cellartis MSC Xeno-Free Culture Medium
      • Cellartis Power Primary HEP Medium
      • Cellartis DEF-CS 500 Culture System
      • Cellartis Enhanced hiPS-HEP cells
      • Cellartis hPS cell-derived cardiomyocytes
      • Cellartis iPS Cell to Hepatocyte Differentiation System
      • GS1-R
      • 2i mES/iPSC medium
      • iMatrix-511
      • 3i mES/iPSC medium
      • NDiff 227
      • NDiff N2
      • RHB-A
      • STEM101
      • STEM121
      • STEM123
    • Selection guides
      • Stem cell antibody selection guide
      • Stem cell media product finder
      • Stem cell tools product finder
      • Hepatocyte product finder
  • Protein research
    • Capturem technology
      • Capturem protocols
      • Capturem tech notes and applications
      • FAQs about Capturem technology
      • Capturem technology citations
      • Capturem posters
    • Antibody immunoprecipitation
      • IP and Co-IP of cardiac voltage-gated ion channel proteins
      • Tech note: thiophilic antibody purification resins
      • Tech note: IP and Co-IP
    • His-tag purification
      • Purification methods overview
      • TALON resin selection guide
      • Selection guide: His60 resin
      • xTractor Buffer is optimized for superior protein yield
      • Why tag a protein?
      • Tech note: cobalt resin
      • Simplified purification of active, secreted his-tagged proteins
      • Overview: His60
      • Tech note: Capturem technology
      • Tech note: Capturem large volume
      • Magnetic beads
      • FAQs: TALON
      • Protocols
        • Video: Capturem his maxiprep
        • Video: Capturem his miniprep
        • Visual protocol: Capturem his maxiprep
        • Visual protocol: Capturem his miniprep
        • Capturem nickel column reagent compatibility
        • TALON reagent compatibility
        • His60 reagent compatibility
        • TALON: Native vs denaturing purification
        • Protocol: denaturing purification with TALON resin, imidazole elution
        • Protocol: native purification with TALON resin, imidazole elution
        • Protocol: native purification with TALON resin, pH elution
    • Other tag purification
      • Streptavidin-based enrichment using Capturem technology
      • Selection guide: peptide tags
      • Myc-tagged protein purification overview
      • GST-tagged protein purification overview
    • Phosphoprotein and glycoprotein purification
      • Non-tagged protein purification overview
      • Phosphoprotein purification overview
    • Matchmaker Gold yeast two-hybrid systems
      • Matchmaker Gold Yeast Two-Hybrid System
      • Make your own library for yeast two-hybrid screening
      • Mate and Plate yeast two-hybrid cDNA libraries
      • Aureobasidin A for improved selectable drug resistance in yeast
    • Expression systems
      • Protein expression overview
      • Insect expression overview
      • Mammalian expression overview
      • pHEK293 Ultra expression overview
      • OKT3 expression in mammalian cells
      • Bacterial expression overview
  • PCR
    • Citations
      • PrimeSTAR HS
      • EmeraldAmp MAX
      • Terra PCR Direct
      • EmeraldAmp GT
      • Takara Ex Taq
      • PrimeSTAR Max
      • PrimeSTAR GXL
      • Takara LA Taq
      • SpeedSTAR HS
      • Takara Taq and Taq HS
      • Titanium Taq
    • PCR selection guide
    • PCR enzyme brochure
    • Technical notes
      • Rapid, high-performance multiplex PCR
      • EmeraldAmp outperforms MyTaq Red mix
      • Fast and accurate PCR
      • Methylation studies
      • Hot-start PCR
      • Long-range PCR with LA Taq
      • Direct PCR from human nail
      • Direct PCR from meat samples
      • Megaprimer PCR with PrimeSTAR GXL
      • Amplifying GC-rich templates
      • Titanium Taq for high-throughput genotyping
      • Colony PCR in under an hour
      • High-throughput endpoint PCR
      • Direct PCR from blood
      • PrimeSTAR GXL for targeted sequencing
      • Detecting somatic mosaicism using massively parallel sequencing
    • FAQ
      • Primer design
      • Optimization
      • Troubleshooting
      • Applications and conditions
      • Shipping, storage, and handling
    • Go green with lyophilized enzymes
  • Cloning
    • Automated In-Fusion Cloning
    • In-Fusion Cloning general information
      • In-Fusion Cloning overview
      • In-Fusion Cloning guide
      • In-Fusion Cloning and competition
        • In-Fusion Snap Assembly vs. GeneArt Gibson Assembly HiFi
        • In-Fusion Snap Assembly vs. NEBuilder HiFi
        • Sequence accuracy in seamless cloning
        • Choosing a seamless cloning method
        • Improving background over Gibson Assembly
        • A successful alternative to ligation cloning
        • Single- and multiple-insert cloning
        • Easy cloning into lentiviral vectors
        • Outperforming TOPO cloning
      • In-Fusion Cloning citations
      • Stellar Competent Cells product overview and performance data
      • EcoDry reagents and sustainability
    • Primer design and other tools
      • Seamless cloning primer design
      • In-Fusion Cloning tutorials
        • Cloning one or more fragments
        • Deleting a sequence
        • Inserting a sequence
        • Deleting and replacing a sequence
      • In-Fusion molar ratio calculator
      • Simulate your construct
    • In‑Fusion Cloning tips and FAQs
    • Applications and technical notes
      • In-Fusion Cloning applications collection
      • Efficient multiple-fragment cloning
      • Mutagenesis with In-Fusion Cloning
      • Rapid, high-throughput cloning for antibody development
      • Solve a synthesis challenge with easy multiple-insert cloning
      • Direct cloning into large vectors
      • Simplified insertion of a GFP-encoding cassette into a 100-kb plasmid
      • Efficient cloning for sgRNA/Cas9 plasmids
      • In-Fusion Cloning of sgRNAs
      • De novo insertion of small fusion protein tags
    • Sign up to stay updated
    • Traditional molecular cloning
      • Restriction enzyme overview
        • General information about restriction enzymes
        • Star activity of restriction enzymes
        • Inactivation of restriction enzymes
        • Buffer activity with restriction enzymes
        • Universal buffers for double digestion with restriction enzymes
        • Restriction enzymes affected by methylation
        • Methylation-sensitive restriction enzymes
        • QC of restriction enzymes
      • Ligation cloning overview
      • Ligation product guide
    • In-Fusion Cloning webinars
  • Nucleic acid purification
    • Nucleic acid extraction webinars
    • Product demonstration videos
    • Product finder
    • Plasmid kit selection guide
    • Plasmid purification
      • NucleoSpin Plasmid Transfection-grade
      • NucleoSnap Plasmid Midi
      • NucleoBond Xtra Midi/Maxi
      • EF plasmid purification overview
    • Genomic DNA purification
      • Tissue
        • NucleoSpin Tissue
        • NucleoSpin DNA RapidLyse
        • NucleoSpin Tissue XS
        • NucleoMag DNA Swab
        • NucleoBond HMW DNA
        • NucleoSpin DNA Lipid Tissue
      • FFPE
        • NucleoMag DNA FFPE
        • NucleoSpin 96 DNA FFPE
      • Blood and plasma
        • NucleoMag Blood
        • NucleoSnap cfDNA
        • NucleoSpin cfDNA XS
        • NucleoMag cfDNA
        • NucleoSpin cfDNA Midi
      • Plant
        • NucleoMag 384 Plant
        • NucleoSpin Plant II
      • Other organisms and samples
        • NucleoMag DNA Bacteria
        • NucleoMag DNA Food
        • NucleoSpin DNA Insect
        • NucleoSpin Microbial DNA
    • DNA/RNA cleanup and extraction
      • NucleoSpin Gel and PCR XS product overview
      • NucleoSpin Gel and PCR Clean-up
      • NucleoMag NGS Clean-up and Size Select
      • NucleoSpin RNA Clean-up
    • RNA purification
      • RNA purification overview
      • NucleoSpin RNA Plus
      • NucleoSpin RNA Plus XS
      • NucleoSpin RNA
      • NucleoProtect RNA
      • NucleoSpin miRNA
      • NucleoSpin RNA Blood
      • NucleoSpin miRNA Plasma
      • NucleoZOL for RNA isolation
      • High-throughput RNA isolation from FFPE samples
      • NucleoSpin RNA Plant and Fungi
    • RNA purification kit finder
    • Viral DNA and RNA purification
      • Nucleic acid detection from wastewater
      • NucleoSpin VET
      • NucleoMag VET
      • NucleoMag Virus
      • NucleoMag Pathogen
    • Parallel DNA, RNA & protein
      • NucleoSpin RNA/Protein
      • NucleoSpin TriPrep
    • Automated DNA and RNA purification
      • Application notes, by sample type
        • Plasmid purification
        • DNA cleanup
        • DNA from cells and tissues
        • RNA from cells and tissues
        • DNA from blood and bodily fluids
        • DNA and RNA from plants, fungi, and food
        • Viral RNA and DNA purification
      • Application notes, by platform
        • Eppendorf
        • Tecan
        • Hamilton
        • Thermo Fisher Scientific
        • MASMEC Biomed
    • Accessory selection guides
      • Sample homogenization beads
      • NucleoBond racks selection guide
    • Microbiome
      • NucleoMag DNA Microbiome
      • NucleoSpin Soil
      • NucleoSpin 8/96 Soil
      • NucleoSpin DNA Stool
      • NucleoSpin 96 DNA Stool
      • NucleoMag DNA/RNA Water
      • NucleoSpin eDNA Water
      • NucleoBond RNA Soil
      • NucleoSpin RNA Stool
  • Antibodies and ELISA
    • Osteocalcin focus
  • Real-time PCR
    • Download qPCR resources
      • Download our mycoplasma white paper
      • Download our mycoplasma infographic
    • Overview
      • One-step RT-qPCR kits
      • Two-step RT-qPCR kits
      • Probe-based qPCR kits
      • TB Green-based qPCR kits
      • Videos: qPCR analysis for challenging inputs
      • qRT-PCR to detect RNA present at low levels
    • Product finder
    • Reaction size guidelines
    • Real-time PCR products brochure
    • Real-time PCR tutorial videos
    • Guest webinar: extraction-free SARS-CoV-2 detection
    • Technical notes
      • Unbiased preamplification of limited samples
      • Accurate gene expression analysis with TB Green Premix Ex Taq II
      • Efficient quantification of human gene expression with PrimeScript Reverse Transcriptase
      • Rapid qPCR analysis from blood samples using PrimeScript Reverse Transcriptase
      • Monitoring siRNA knockdown
      • qPCR without optimization using TB Green Premix Ex Taq
      • Fast synthesis of cDNA templates for real-time RT-PCR
      • Specific, consistent real-time PCR with TB Green Premix Ex Taq II
      • Mir-X microRNA quantification
    • FAQs
New products
Need help?
Contact Sales
Visit the product page
Tech Note

A SMARTer approach to T-cell receptor profiling

  • Library amplification without multiplex PCR
    SMART technology and semi-nested PCR approach allow for unbiased amplification of full-length TCR variable sequences
  • Consistent performance across a range of input amounts
    Comparable sequencing results obtained for 10 ng, 100 ng, and 1,000 ng of input RNA
  • Remarkable sensitivity and reproducibility
    Clonotype-specific sequences present at a concentration of 0.1% are detectable above background

Here we present the SMARTer Human TCR a/b Profiling Kit (Takara Bio, Cat. Nos. 635014, 635015, 635016), a high-throughput method for TCR mRNA profiling that leverages SMART (Switching Mechanism at the 5′ end of RNA Template) technology and semi-nested PCR to fully capture and amplify variable regions of TCR-α and TCR-β subunits and prepare libraries for sequencing on Illumina platforms. The unparalleled sensitivity afforded by this approach allows for the detection of low-abundance TCR variants from small sample inputs of human peripheral blood RNA or purified human T cells, and the avoidance of multiplex PCR minimizes the likelihood of sample misrepresentation due to amplification biases. The ability to easily and reliably obtain comprehensive portraits of human T-cell repertoires will accelerate the fulfillment of basic and applied research objectives and could provide a basis for the development of novel clinical diagnostic solutions.

Introduction Results Summary Methods References

Introduction  

Background

What are T-cell receptors?

In humans and closely related species, cellular immunity is mediated by T cells (or T lymphocytes), which participate directly in the detection and neutralization of pathogenic threats. Essential to T-cell function are highly specialized extracellular receptors (T-cell receptors or TCRs) that selectively bind specific antigens displayed by major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells (APCs) (Figure 1, Panel A). Antigen recognition by TCRs activates T cells, causing them to proliferate rapidly and mount immune responses through the release of cytokines.

Given the relative specificity of TCR-antigen interactions, a tremendous diversity of TCRs are required to recognize the wide assortment of pathogenic agents one might encounter. To this end, the adaptive immune system has evolved a system for somatic diversification of TCRs that is unrivaled in all of biology. The vast majority of TCRs are heterodimers composed of two distinct subunit chains (α- and β-), which both contain variable domains and, in humans, are encoded by single-copy genes. The term "clonotype" is typically used to refer either to a particular TCR variant (TCR-α or TCR-β subunit) or to a particular pairing of TCR subunit variants (TCR-α + TCR-β) shared among a clonal population of T cells. TCR diversity is generated during the early stages of T-cell development. T-cell progenitors are derived from hematopoietic stem cells (HSCs) in the thymus, and as these cells divide, extensive recombination occurs between the V- and J-segments, and the V-, D-, and J-segments, in the TCR-α and TCR-β genes, respectively, via a mechanism that also incorporates and deletes additional nucleotides (Figure 1, Panel B). Ultimately, this process—commonly referred to as "V(D)J recombination"—yields a population of T cells with sufficient TCR diversity to collectively recognize any peptide imaginable. The region of TCR-β that spans the V-D and D-J junctions, known as "complementarity determining region 3" (CDR3), is unique to each TCR-β variant and is frequently used to quantify TCR diversity in high-throughput profiling experiments. Following somatic diversification, T cells that lack sufficient affinity for MHC molecules and those that recognize self-antigens are eliminated (positive and negative selection, respectively), yielding a functional T-cell repertoire.

T-cell receptor structure and V(D)J recombination

Figure 1. T-cell receptor structure and diversification. Panel A. A functional αβ TCR heterodimer consisting of α- and β-subunit chains. TCR α-subunit chains consist of "variable" (V), "joining" (J), and "constant" (C) segments depicted in magenta, blue, and green, respectively, while TCR β-subunit chains include these and an additional "diversity" (D) segment, depicted in orange. The CDR3 region of the TCR β-subunit is labeled. The TCR is depicted on the T-cell surface, bound to an antigen associated with an MHC molecule on the surface of an APC. Panel B. V(D)J recombination and post-transcriptional processing of a TCR β-subunit chain. The TCR β locus includes over 50 V segments (magenta), 2 D segments (orange), and 13 J segments (blue). During somatic diversification, at least one of each segment type is randomly selected and further variability is introduced through the incorporation and/or deletion of additional nucleotides (yellow). Splicing of TCR mRNA combines a subset of the respective segments (along with a constant region) into a continuous unit. TCR α-subunit chains are generated via analogous mechanisms.

The seemingly endless number of potential TCR clonotypes—estimates range from 106–107 (Six et al., 2013) to 1015–1020 unique clonotypes (Murphy et al. 2012; Laydon, Bangham, and Asquith 2015)—poses significant challenges for researchers seeking to characterize T-cell repertoires in the context of human development and disease, as extensive amounts of data must be obtained. While low-throughput approaches incorporating conventional cloning and Sanger sequencing and protein-based methods for identifying antigen-specific TCRs (e.g., tetramer assays) have yielded many important insights, the development of next-generation sequencing (NGS) technologies has dramatically expanded the prospects for this field of research.

Why do TCR profiling?

High-throughput TCR profiling experiments have already yielded fundamental insights regarding T-cell development and TCR repertoire diversity (Calis and Rosenberg 2014; Woodsworth, Castellarin, and Holt 2013). For example, these approaches have demonstrated that TCR variation does not determine T-cell fate (Wang et al. 2010) and that there is considerable overlap in the population at large for so-called "public TCRs" or "public clones", which occur much more frequently than would be expected by chance (Robins et al. 2010). A sampling of different populations has revealed that TCR repertoire diversity declines linearly with age and is significantly reduced in patients suffering from autoimmune diseases or cancer, relative to healthy individuals (Britanova et al. 2014; Sherwood et al. 2013; Klarenbeek et al. 2012).

In the clinic, TCR profiling has been used to analyze the recovery of the immune system in patients who have undergone hematopoietic stem cell transplants (HSCT), and to compare the efficacy of approaches aimed at accelerating this process (van Heijst et al. 2013). Looking to the future, high-throughput TCR profiling holds tremendous promise as both a diagnostic tool, and as a means for developing new therapeutics and treatment modalities (Calis and Rosenberg 2014; Woodsworth, Castellarin, and Holt 2013). For example, TCR repertoire analysis could be used to evaluate a candidate vaccine's capacity to trigger a protective immune response.

Sequencing approaches for TCR repertoire analysis

The vast majority of TCR-profiling experiments performed thus far have focused on capturing genomic DNA or mRNA sequences that correspond to the CDR3 region of the TCR-β subunit chain (Calis and Rosenberg 2014; Woodsworth, Castellarin, and Holt 2013). Given that the CDR3 region is thought to be unique to each TCR-β variant, sequence variation in this region has served as a useful proxy for overall T-cell repertoire diversity.

While sequencing genomic DNA may be preferable for certain TCR-profiling applications—including those that involve quantifying various T-cell subpopulations—this approach is not without its limitations, and methods that involve analyzing mRNA sequences carry several important advantages. TCR mRNA templates are likely to be more highly represented than DNA templates in any one T cell, such that mRNA sequencing approaches will afford greater sensitivity and allow for more comprehensive identification of unique TCR variants, including those that are present in a very small proportion of T cells. Another important benefit of sequencing mRNA rather than genomic DNA is that it specifically allows for the identification of expressed TCR sequences that have undergone splicing and post-transcriptional processing and are likely to yield functional proteins. DNA-based approaches, by contrast, do not identify TCR sequences in their translated forms, and will unavoidably yield many nonproductive sequences that are functionally irrelevant. For this reason, mRNA sequencing is the preferred option for researchers interested in exploring functional aspects of specific TCR variants. TCR profiling approaches that involve sequencing genomic DNA are also subject to significant technical limitations. Due to the lack of splicing, DNA-derived templates are considerably longer than their RNA counterparts, such that amplification of genomic DNA corresponding to TCR variable regions (including CDR3) requires multiplex PCR and is potentially susceptible to biases imposed by the various primer pairs. As demonstrated below, the relatively shorter length of TCR mRNA templates allows for simpler amplification schemes in which TCR-α and TCR-β variable regions are captured with single primer pairs, minimizing the potential for amplification biases and allowing for analysis of both subunit chains in the same experiment.

Experimental workflow

First-strand cDNA synthesis and template switching

This approach utilizes leukocyte RNA extracted from human peripheral blood or intact human T cells as starting material. First-strand cDNA synthesis is dT-primed (TCR dT Primer) and performed by the MMLV-derived SMARTScribe Reverse Transcriptase (RT), which adds nontemplated nucleotides upon reaching the 5′ end of each mRNA template (Figure 2, Panel A). The SMART-Seq v4 Oligonucleotide—enhanced with Locked Nucleic Acid (LNA) technology for increased sensitivity and specificity—then anneals to the nontemplated nucleotides, and serves as a template for the incorporation of an additional sequence of nucleotides to the first-strand cDNA by the RT (this is the template-switching step). This additional sequence—referred to as the "SMART sequence"—serves as a primer-annealing site for subsequent rounds of PCR, ensuring that only sequences from full-length cDNAs undergo amplification.

cDNA amplification and incorporation of Illumina adapters by semi-nested PCR

Following reverse transcription and extension, two rounds of PCR are performed in succession to amplify cDNA sequences corresponding to variable regions of TCR-α and/or TCR-β transcripts. The first PCR uses the first-strand cDNA as a template and includes a forward primer with complementarity to the SMART sequence (SMART Primer 1), and a reverse primer that is complementary to the constant (i.e. nonvariable) region of either TCR-α or TCR-β (TCRa/b Human Primer 1); both reverse primers may be included in a single reaction if analysis of both TCR subunit chains is desired. By priming from the SMART sequence and constant region, the first PCR specifically amplifies the entire variable region and a considerable portion of the constant region of TCR-α and/or TCR-β cDNA (Figure 2, Panel B).

The second PCR takes the product from the first PCR as a template, and uses semi-nested primers (TCR Primer 2 and TCRa/b Human Primer 2) to amplify the entire variable region and a portion of the constant region of TCR-α and/or TCR-β cDNA (once again, either or both TCR subunit chains may be amplified in a single reaction). Included in the forward and reverse primers are adapter and index sequences which are compatible with the Illumina sequencing platform (read 2 + i7 + P7 and read 1 + i5 + P5, respectively). Following post-PCR purification, size selection, and quality analysis, the library is ready for Illumina sequencing.

Library preparation workflow for SMARTer TCR profiling

Figure 2. Library preparation workflow and PCR strategy for TCR profiling using the SMARTer approach. Panel A. Reverse transcription and PCR amplification of TCR subunit mRNA sequences. First-strand cDNA synthesis is primed by the TCR dT Primer and performed by an MMLV-derived reverse transcriptase (RT). Upon reaching the 5′ end of each mRNA molecule, the RT adds nontemplated nucleotides to the first-strand cDNA. The SMART-Seq v4 Oligonucleotide contains a sequence that is complementary to the nontemplated nucleotides added by the RT and hybridizes to the first-strand cDNA. In the template-switching step, the RT uses the remainder of the SMART-Seq v4 Oligonucleotide as a template for the incorporation of an additional sequence on the end of the first-strand cDNA. Full-length variable regions of TCR cDNA are selectively amplified by PCR using primers that are complementary to the oligonucleotide-templated sequence (SMART Primer 1) and the constant region(s) of TCR-α and/or TCR-β subunits (TCR a/b Human Primer 1). A subsequent round of PCR is performed to further amplify variable regions of TCR-α and/or TCR-β subunits and incorporate adapter sequences, using TCR Primer 2 and TCR a/b Human Primer 2. Included in the primers are adapter and index sequences (read 2 + i7 + P7 and read 1 + i5 + P5, respectively) that are compatible with the Illumina sequencing platform. Following purification, size selection, and quality analysis, the TCR cDNA library is ready for sequencing. Panel B. Semi-nested PCR approach for amplification of TCR-α and/or TCR-β subunits. The primer pairs used for the first round of amplification capture the entire variable region(s) and most of the constant region(s) of TCR-α and/or TCR-β cDNA. The second round of amplification retains the entire variable region(s) of TCR-α and/or TCR-β cDNA, and a smaller portion of the constant region(s). The anticipated size of final TCR library cDNA (inserts + adapters) is ~700–800bp.

Library quality control and Illumina sequencing

Prior to sequencing, libraries are purified and size selected using Solid Phase Reversible Immobilization (SPRI) beads. To confirm the success of library amplification and purification, samples are run on a Fragment Analyzer or Bioanalyzer (Figure 3). The position and shape of electropherogram peaks vary depending on whether TCR-α and/or TCR-β sequence fragments are included in the library, the nature of the sample input, and the analysis method. Once the quality and size of each purified library have been confirmed, samples are sequenced on the Illumina platform using 300 bp paired-end reads, which fully capture the TCR sequence included in each cDNA molecule.

Electropherogram profiles of TCR sequencing libraries

Figure 3. Electropherogram profiles of TCR sequencing libraries. Libraries containing both TCR-α and TCR-β sequences were generated using 10 ng of RNA obtained from either a heterogeneous population of peripheral blood leukocytes or a Jurkat cell line consisting of a single T-cell clonotype. Electropherogram profiles of the final libraries were obtained on both an Advanced Analytical Fragment Analyzer and an Agilent 2100 Bioanalyzer. Peaks situated at the far left and right ends of each electropherogram correspond to DNA reference markers included in each analysis. Panel A. Typical Fragment Analyzer profile of sequencing library for TCR-α and TCR-β, obtained from peripheral blood leukocyte RNA. Panel B. Typical Bioanalyzer profile of sequencing library for TCR-α and TCR-β, obtained from peripheral blood leukocyte RNA (same library as Panel A). The library profiles from the Fragment Analyzer and the Bioanalyzer both show a broad peak between ~650–1150 bp and a maximal peak in the range of ~700–800 bp for the library obtained from peripheral blood leukocyte RNA. Panel C. Typical Fragment Analyzer profile of sequencing library for TCR-α and TCR-β, obtained from monoclonal Jurkat T-cell RNA. The Fragment Analyzer profile for the library obtained from Jurkat RNA shows distinct peaks at approximately 700 bp and 800 bp, which correspond to predicted sizes of TCR-β and TCR-α sequence fragments, respectively. Panel D. Typical Bioanalyzer profile of sequencing library for TCR-α and TCR-β, obtained from Jurkat T-cell RNA (same library as Panel C). The Bioanalyzer profile for the library obtained from Jurkat RNA shows a peak similar in shape and position to the peaks shown in Panel A and Panel B.

Results  

Cross-sample clonotype comparisons

The SMARTer Human TCR a/b Profiling Kit was used to process RNA extracted from replicate peripheral blood mononuclear cell (PBMC) samples obtained from eight blood cancer patients. Sequencing outputs for the 16 resulting cDNA libraries were analyzed using a computational immunology platform as reported in the Methods section below. One form of analysis involved determining the number of common TCR-α and TCR-β clonotypes shared between samples, based on sequences that mapped to the CDR3 regions of TCR-α or TCR-β. The results are depicted using a heat map, in which different tile colors correspond to Log10-transformed counts for the number of clonotypes shared between the indicated pairings (Figure 4). Not surprisingly, the greatest level of overlap is observed between replicate PBMC samples from the same patient. In contrast, the level of overlap is dramatically lower for PBMC samples from different patients. These results speak to both the reproducibility and sensitivity of the SMARTer approach, in that it generates similar TCR profile data for replicate samples, and markedly divergent TCR profile data for samples obtained from different patients.

Cross-sample clonotype comparisons

Figure 4. Heat map of cross-sample clonotype comparisons. The experimental protocol was performed on RNA extracted from replicate PBMC samples (R1, R2) obtained from eight blood cancer patients (P1–P8). Resulting sequencing reads were mapped to CDR3 regions of TCR-α or TCR-β to identify clonotypes present in each sample. For each pairwise comparison indicated by the labels along the bottom and right-hand sides of the heat map, the tile color indicates the Log10-transformed value for the number of clonotypes that are common to both samples. Dendrograms on both axes indicate relative similarities between samples.

Sequencing reads on target

To evaluate the performance of the kit for a range of input amounts, the SMARTer workflow was performed on three different amounts of peripheral blood RNA (10 ng, 100 ng, and 1,000 ng) and the resulting cDNA libraries were sequenced as above. Sequencing outputs were downsampled to either ~260,000 or ~275,000 reads, depending on the analysis method, and processed using an application provided by Illumina via the BaseSpace website, as reported in the Methods section, below. For each RNA sample amount analyzed, ≥70% of sequencing reads mapped to a CDR3 region in either TCR-α or TCR-β, with the 10-ng sample amount yielding the highest percentage of on-target reads (Figure 5, Panel A). These results demonstrate that the SMARTer approach can capture and amplify TCR sequences from total RNA with considerable specificity across a wide range of sample input amounts.

Correlation of clonotype count data for varying sample input amounts

Another form of analysis involved plotting counts of the 100 most highly represented clonotypes for varying sample input amounts. Comparison of clonotype count data for the 100 ng and 1,000 ng sample amounts yielded a Pearson correlation coefficient of 0.80 and a Spearman coefficient of 0.80 (Figure 5, Panel B), a result that attests to the robustness of the SMARTer approach for input sample amounts that vary by at least one order of magnitude.

Sequencing reads on target and clonotype count data for SMARTer TCR profiling

Figure 5. Sequencing reads on target and correlation of clonotype count data for varying sample input amounts. Panel A. Percentages of sequencing reads that map to CDR3 regions in either TCR-α (blue) or TCR-β (purple) or that represent off-target reads (gray). The experimental protocol was performed on three different amounts of peripheral blood RNA: 10 ng, 100 ng, and 1,000 ng. Panel B. Correlation of clonotype count data for 100 ng input RNA vs. 1,000 ng input RNA. Pearson (R) and Spearman (ρ) correlation coefficients are included.

Visual representation of TCR-β clonotype distributions

The distribution of TCR clonotypes identified in the sequencing data can also be depicted visually using chord diagrams (Figure 6). Included here are chord diagrams representing the observed distributions of the indicated TCR-β Variable-Joining (V-J) segment combinations for each RNA input amount. Each arc (on the periphery of the diagram) represents a V or J segment and is scaled lengthwise in proportion to that segment's distribution in the dataset. Each chord (connecting the arcs) represents a set of clonotypes which include the indicated V-J combination and is weighted according to that set's distribution in the dataset. Comparison of the three diagrams suggests that the indicated clonotypes are identified at similar proportions for each RNA input amount.

TCR-beta clonotype distributions

Figure 6. Chord diagrams of TCR-β clonotype distributions observed for varying sample input amounts. Each chord diagram depicts the distribution of the indicated TCR-β Variable-Joining (V-J) segment combinations for the indicated RNA input amount. Each arc (on the periphery of each diagram) represents a V or J segment and is scaled lengthwise according to the relative proportion at which the segment is represented in the dataset. Each chord (connecting the arcs) represents a set of clonotypes which include the indicated V-J combination and is weighted according to the relative abundance of that combination in the dataset. Panel A. Chord diagram for 10 ng input of PBMC RNA. Panel B. Chord diagram for 100 ng input of PBMC RNA. Panel C. Chord diagram for 1,000 ng input of PBMC RNA.

Assessing the sensitivity and reproducibility of the SMARTer approach

In order to assess the sensitivity and reproducibility of the SMARTer approach, the protocol was performed in replicate on PBMC RNA samples spiked at varying concentrations (10%, 1%, 0.1%, 0.01%, and 0.001%) with RNA obtained from a homogenous population of Leukemic Jurkat T cells (TRAV8-4-TRAJ3, TRBV12-3-TRBJ1-2 clonotype). The number of TRBV12-3-TRBJ1-2-specific sequence reads obtained for each spiked sample was normalized by subtracting the number of corresponding reads obtained for negative control samples consisting of unspiked PBMC RNA. Following Log10 transformation, plotting of the data (spike-in dilution vs. normalized read count) and linear regression analysis revealed a statistically significant correlation (p = 3.93 x 10-10, R2 = 0.99) between the amount of spiked-in Jurkat RNA and the number of TRBV12-3-TRBJ1-2-specific sequence reads (Figure 7, Panel A). This result demonstrates that differences in the relative abundance of transcripts for a particular TCR clonotype are faithfully and reproducibly represented in sequencing libraries generated using the SMARTer approach. Comparison of the number of TRBV12-3-TRBJ1-2-specific sequence reads obtained for the control vs. spike-in samples suggests that added Jurkat RNA at a concentration of 0.1% is detectable above background in the sequencing output (p <0.005) at a depth of ~275,000 reads, evidence of the sensitivity afforded by the SMARTer approach (Figure 7, Panel B).

Sensitivity data for SMARTer TCR profiling

Amount of Jurkat RNA% spike-in (% Jurkat RNA in 10 ng PBMC RNA)# TRBV12-3-TRBJ1-2 clonotypes identifiedSignal: noiseTwo-tailed, Student's t-test (p value)p<0.005?p<0.001?
Replicate 1Replicate 2Ratio (x̄ spike-in/ x̄ control (0%))
0 0.000% 619 480 1.0000 - - -
100 fg 0.001% 649 488 1.0346 0.87498 False False
1 pg 0.010% 702 597 1.1820 0.36972 False False
10 pg 0.100% 1,695 1,673 3.0646 0.00382 True False
100 pg 1.000% 12,074 11,206 21.1829 0.00157 True False
1 ng 10.000% 62,395 63,006 114.1592 0.00003 True True

Figure 7. Assessing the sensitivity and reproducibility of the SMARTer approach. The experimental protocol was performed in replicate on PBMC RNA samples spiked at varying concentrations (10%, 1%, 0.1%, 0.01%, and 0.001%) with RNA obtained from a homogenous population of Leukemic Jurkat T cells (TRAV8-4-TRAJ3, TRBV12-3-TRBJ1-2 clonotype). Panel A. Correlation between concentration of spiked-in Jurkat RNA and number of TRBV12-3-TRBJ1-2-specific sequence reads. Numbers along the X-axis indicate serial-diluted concentrations of spiked-in Jurkat RNA (by mass): 1 = 10%; 2 = 1%; 3 = 0.1%; 4 = 0.01%; 5 = 0.001%. Count data for TRBV12-3-TRBJ1-2-specific sequence reads were normalized by subtracting the number of corresponding reads obtained for negative control samples consisting of unspiked PBMC RNA. Normalized count data were then Log10 transformed. Circles and triangles correspond to experimental replicates for each sample concentration. Results of linear regression analysis are indicated in the upper right region of the graph. Panel B. Count data, signal-to-noise ratios, and statistical analysis for TRBV12-3-TRBJ1-2-specific sequence reads obtained from spiked RNA samples. Signal-to-noise ratios were generated using the mean counts of TRBV12-3-TRBJ1-2-specific sequence reads for each pair of experimental replicates. Rows highlighted in yellow include concentrations of spiked-in Jurkat RNA for which statistically significant elevations in TRBV12-3-TRBJ1-2-specific sequence reads were detected relative to background counts observed for unspiked negative control RNA samples.

Summary  

Our SMARTer Human TCR a/b Profiling Kit provides a powerful solution for those seeking to elucidate the diversity of TCR-α and/or TCR-β subunits present in samples consisting of human leukocyte RNA or intact T cells. In contrast with profiling methods that involve the amplification of genomic DNA, our 5' RACE-based approach uses total RNA as input material. Starting from RNA allows for the capture of complete TCR V(D)J variable regions, the avoidance of multiplex PCR amplification strategies, and the detection of low-abundance TCR clonotypes. Sequencing data derived from TCR RNA may also yield worthwhile insights regarding the function of corresponding subunit proteins. The results presented here indicate that the SMARTer Human TCR a/b Profiling Kit generates data that is highly reproducible over a range of sample input amounts and consists largely of on-target reads. They also demonstrate that our method allows for the detection of TCR clonotypes present at proportions of 0.1% of total RNA at a relatively shallow read depth. On the basis of its reliability and elegance, our SMARTer approach to TCR profiling will help forward basic and applied research objectives involving the analysis of human immune repertoires.

Methods  

All sequencing libraries were generated using protocols and reagents included in the SMARTer Human TCR a/b Profiling Kit (Takara Bio, Cat. Nos. 635014, 635015, 635016).

Input material

Libraries included in the quality analysis (Figure 3) were generated from 10 ng of commercially available input RNA. Both Human Blood, Peripheral Leukocytes Total RNA (Takara Bio, Cat. No. 636592) and Total RNA - Human Tumor Cell Line: Jurkat (BioChain, Cat. No. R1255815-50) were used. For the cross-sample clonotype comparisons (Figure 4), libraries were generated from 5 ng–2 µg of RNA obtained from Conversant Biologics, Inc., which sourced the PBMC samples and extracted the RNA. Libraries included in the analyses of reads on target (Figure 5) and TCR-β clonotypes identified (Figure 6) were generated from 10 ng, 100 ng, and 1,000 ng of Human Blood, Peripheral Leukocytes Total RNA, respectively. Libraries included in the sensitivity and reproducibility assays (Figure 7) were generated from 10 ng of Human Blood, Peripheral Leukocytes Total RNA spiked with serial-diluted Total RNA - Human Tumor Cell Line: Jurkat at the indicated concentrations.

PCR parameters

As indicated in the SMARTer Human TCR a/b Profiling Kit user manual, all libraries were subject to two rounds of semi-nested PCR amplification. Libraries included in the quality analysis (Figure 3) and in the sensitivity and reproducibility assays (Figure 7) were amplified using 21 cycles for PCR 1, and 20 cycles for PCR 2. Libraries included in the cross-sample clonotype comparisons (Figure 4) were amplified using 20 cycles for PCR 1 and 15–20 cycles for PCR 2 (depending on the RNA input amount). For the analyses of reads on target (Figure 5) and TCR-β clonotypes identified (Figure 6), the following numbers of PCR cycles were used for each input amount:

  • 10 ng: 21 cycles for PCR 1, 20 cycles for PCR 2
  • 100 ng: 21 cycles for PCR 1, 15 cycles for PCR 2
  • 1,000 ng: 21 cycles for PCR 1, 12 cycles for PCR 2

For all experiments performed, mixtures of TCR-α- and TCR-β-specific primers were included in both PCR 1 and PCR 2 at a 2:1 ratio (TCR-α:TCR-β).

Library purification

Amplified libraries were purified using the Agencourt AMPure XP PCR purification kit (5-ml size: Beckman Coulter Item No. A63880; 60-ml size: Beckman Coulter Item No. A63881). Libraries validated on a Fragment Analyzer were subject to one double size selection, while libraries validated on a Bioanalyzer were subject to two double size selections. Beads were pelleted using a SMARTer-Seq Magnetic Separator - PCR Strip (Takara Bio, Cat. No. 635011).

Library validation

Library validation was performed using an Advanced Analytical Fragment Analyzer and the High Sensitivity NGS Fragment Analysis Kit (Advanced Analytical, Cat. No. DNF-474), or an Agilent 2100 Bioanalyzer and the DNA 1000 Kit (Agilent, Cat. No. 5067-1504). For validation on the Fragment Analyzer, purified libraries were diluted 1:5, and 1 µl of the diluted library was analyzed. For validation on the Bioanalyzer, 1 µl of purified, undiluted library was analyzed.

Illumina sequencing

Libraries were pooled to a final pool concentration of 4 nM. Pooled libraries were then diluted to a final concentration of 13.5 pM, including a 10% PhiX Control v3 (Illumina, Cat. No. FC-110-3001) spike-in. Libraries were sequenced on an Illumina MiSeq® sequencer using the 600-cycle MiSeq Reagent Kit v3 (Illumina, Cat. No. MS-102-3003) with paired-end, 2 x 300 base pair reads.

Data analysis

For the cross-sample clonotype comparisons (Figure 4), sequencing data were analyzed using the AbGenesis computational immunology platform, provided by Distributed Bio, Inc. For other analyses, sequencing data were downsampled to either ~260,000 reads (Figure 5 and Figure 6) or ~275,000 reads (Figure 7) and analyzed using the MiXCR software package (Bolotin et al. 2015), hosted on BaseSpace, Illumina's cloud computing environment for next-generation sequencing. Statistical analyses were performed using Excel (Microsoft).

References  

Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

Britanova, O. V et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 192, 2689–98 (2014).

Calis, J. J. A. & Rosenberg, B. R. Characterizing immune repertoires by high throughput sequencing: Strategies and applications. Trends Immunol. 35, 581–590 (2014).

van Heijst, J. W. J. et al. Quantitative assessment of T cell repertoire recovery after hematopoietic stem cell transplantation. Nat. Med. 19, 372-7 (2013).

Kenneth Murphy, Paul Travers, Mark Walport, Michael Ehrenstein, Claudia Mauri, Allan Mowat, A. S., Hsu, D. C., Murphy, K. M., Travers, P. & Walport, M. Janeway's Immunobiology. Garl. Sci. 7, (2008).

Klarenbeek, P. L. et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann. Rheum. Dis. 71, 1088–1093 (2012).

Laydon, D. J., Bangham, C. R. M. & Asquith, B. Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach. Phil Trans R Soc B 370, 20140291- (2015).

Robins, H. S. et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2, 47ra64 (2010).

Sherwood, A. M. et al. Tumor-infiltrating lymphocytes in colorectal tumors display a diversity of T cell receptor sequences that differ from the T cells in adjacent mucosal tissue. Cancer Immunol. Immunother. 62, 1453–1461 (2013).

Six, A. et al. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front. Immunol. 4, (2013).

Wang, C. et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl. Acad. Sci. U. S. A. 107, 1518–23 (2010).

Woodsworth, D. J., Castellarin, M. & Holt, R. A. Sequence analysis of T-cell repertoires in health and disease. Genome Med 5, 98 (2013).

Related Products

Cat. # Product Size Price License Quantity Details

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us