We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Technotes
  • Automation systems
  • Next-generation sequencing
    • Product line overview
    • RNA-seq
    • Technical notes
    • Technology and application overviews
    • FAQs and tips
    • DNA-seq protocols
    • Bioinformatics resources
    • Webinars
    • Posters
  • Spatial biology
  • mRNA and cDNA synthesis
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Real-time PCR
Learn more about our pico-input SMARTer RNA-seq products. SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian
Home › Learning centers › Next-generation sequencing › RNA-seq › Technotes › Stranded libraries from picogram-input total RNA (v2)

Learning centers

  • Automation systems
    • Shasta Single Cell System introduction
      • Biomarker and drug discovery
      • Shasta educational library
    • SmartChip Real-Time PCR System introduction
      • SmartChip Real-Time PCR System applications
        • Pathogen detection in human samples and food
          • Pathogen detection from UTI, STI and wound infections
          • High-throughput detection of SARS-CoV-2
        • Antibiotic resistance genes
          • Screening for antibiotic resistance genes in manure and sewage
          • Uncovering antibiotic resistance genes in soil, sediment, and sludge
          • Tracking down antibiotic resistance genes in hospitals
          • Identifying antibiotic resistance genes in water
        • mRNA, miRNA, and lncRNA as disease biomarkers
        • Genotyping using animal and blood samples
      • SmartChip Real-Time PCR System video resources
        • Webinar: Monitoring ARGs in environmental samples
        • Webinar: antibiotic resistance screening
        • SmartChip tutorials
    • ICELL8 introduction
      • ICELL8 cx applications
        • Archival nanowell sequencing
      • ICELL8 technology overview
      • ICELL8 cx technical specifications
      • ICELL8 technical specifications (original system)
      • ICELL8 system vs plate-seq
      • Webinars
        • Webinar: Leveraging single-cell transcriptomics and epigenomics for biomarker discovery
        • Advances in single-cell indexing registration
        • Single-Cell Workshop at 2020 NextGen Omics Series UK
        • The power of full-length scRNA-seq
        • Sign up: cardiomyocyte webinar
      • Technical notes
        • Enhancing biomarker discovery with SMART-Seq Pro kit and ICELL8 cx system
        • ICELL8 cx system target enrichment for fusions
        • ICELL8 cx system reagent formulation and dispense guidelines
        • Improved detection of gene fusions, SNPs, and alternative splicing
        • Full-length transcriptome analysis
        • High-throughput single-cell ATAC-seq
        • Protocol: High-throughput single-cell ATAC-Seq
        • Single-cell identification with CellSelect Software
        • Single-cell analysis elucidates cardiomyocyte differentiation from iPSCs
        • Combined TCR profiling and 5’ DE in single cells
        • Automated, high-throughput TCR profiling
      • Sample preparation protocols
        • Basic cell preparation for the ICELL8 cx system
        • Protocol: Nuclei isolation from mammalian cells
        • Protocol: Mouse cardiomyocyte preparation
        • Isolate cells of any size
      • Video resources
      • Citations
      • Posters
      • System & software notices
    • Apollo library prep system introduction
      • Automated VeriSeq library preparation for PGS
      • Apollo library prep system citations
      • SMART-Seq v4 chemistry for the Apollo system
      • Apollo library prep system overview
      • Apollo system technical specifications
      • In-tip bead separation on the Apollo system
  • Next-generation sequencing
    • Product line overview
    • RNA-seq
      • Automated library prep
      • Technologies and applications
        • SMART technology
        • Single-cell mRNA-seq
        • Total RNA-seq
        • SMART-Seq PLUS solutions
      • Technotes
        • Enabling long-read RNA sequencing from low-input samples
        • Singular for low input total RNA seq
        • All-in-one cDNA synthesis and library prep from single cells
        • Automation-friendly, all-in-one cDNA synthesis and library prep
        • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
        • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
        • Full-length mRNA-seq for target capture
        • Stranded libraries from single cells
        • Stranded libraries from picogram-input total RNA (v3)
        • Stranded libraries from 100 pg-100 ng total RNA
        • Stranded libraries from 100 ng - 1 ug total RNA
        • Stranded libraries from FFPE inputs (v2)
        • Nonstranded libraries from FFPE inputs
        • Singular and Takara Bio library prep
        • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
      • Webinars
        • Pushing the limits of sensitivity for single-cell applications
        • Capturing biological complexity by high-resolution single-cell genomics
        • Taking single-cell RNA-seq by STORM
        • STORM-seq Q&A
        • Neural multiomics Q&A
        • Liver metabolic function, dissecting one cell at a time
        • Pushing the limits Q&A
        • Total RNA sequencing of liquid biopsies
        • Liver metabolic function Q&A
        • Automating full-length single-cell RNA-seq libraries
        • Single-cell whole transcriptome analysis
        • Sensitivity and scale for neuron multiomics
      • RNA-seq tips
      • RNA-seq FAQs
    • Technical notes
      • DNA-seq
        • Next-gen WGA method for CNV and SNV detection from single cells
        • Low-input whole-exome sequencing
        • DNA-seq from FFPE samples
        • Low cell number ChIP-seq using ThruPLEX DNA-Seq
        • Detection of low-frequency variants using ThruPLEX Tag-Seq FLEX
        • ThruPLEX FLEX outperforms NEBNext Ultra II
        • Streamlined DNA-seq from challenging samples
        • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
        • ThruPLEX FLEX data sheet
        • Low-volume DNA shearing for ThruPLEX library prep
        • NGS library prep with enzymatic fragmentation
        • Comparing ThruPLEX FLEX EF to Kapa and NEBNext
      • Immune Profiling
        • Track B-cell changes in your mouse model
        • Efficient and sensitive profiling of human B-cell receptor repertoire
        • TCRv2 kit validated for rhesus macaque samples
        • Improved TCR repertoire profiling from mouse samples (bulk)
        • TCR repertoire profiling from mouse samples (bulk)
        • BCR repertoire profiling from mouse samples (bulk)
        • Improved TCR repertoire profiling from human samples (bulk)
        • TCR repertoire profiling from human samples (single cells)
        • BCR repertoire profiling from human samples (bulk)
      • Epigenetic sequencing
        • ChIP-seq libraries for transcription factor analysis
        • ChIP-seq libraries from ssDNA
        • Full-length small RNA libraries
        • Methylated DNA-seq with MBD2
      • Reproductive health technologies
        • Embgenix ESM Screen
        • Embgenix PGT-A
    • Technology and application overviews
      • Embgenix GT-omics Oncology Tech Note
      • Sequencing depth for ThruPLEX Tag-seq
      • Whole genome amplification from single cells
    • FAQs and tips
      • Positive and negative controls in scRNA-seq
      • DNA-seq FAQs
      • ChIP-seq FAQs
      • Indexing FAQs
      • TCR-seq methods: Q&A
    • DNA-seq protocols
      • Using UMIs with ThruPLEX Tag-Seq FLEX
      • Targeted capture with Agilent SureSelectQXT
      • Exome capture with Illumina Nextera Rapid Capture
      • Targeted capture with Roche NimbleGen SeqCap EZ
      • Targeted capture with IDT xGen panels
      • Targeted capture with Agilent SureSelectXT
      • Targeted capture with Agilent SureSelectXT2
    • Bioinformatics resources
      • Cogent NGS Analysis Pipeline
        • Cogent NGS Analysis Pipeline notices
      • Cogent NGS Discovery Software
        • Cogent NGS Discovery Software notices
      • Cogent NGS Immune Profiler
        • Cogent NGS Immune Profiler Software notices
      • Cogent NGS Immune Viewer
      • Embgenix Analysis Software
      • SMART-Seq DE3 Demultiplexer
    • Webinars
      • Harnessing the power of full-length transcriptome analysis for biomarker discoveries
      • SMART-Seq Pro kits for biomarker detection
      • Takara Bio Single-Cell Workshop, Spring 2021
      • Single-Cell Workshop at 2020 NextGen Omics Series UK
      • Immunogenomics to accelerate immunotherapy
      • MeD-Seq, a novel method to detect DNA methylation
      • Single-cell DNA-seq
    • Posters
      • Long-read mRNA-seq poster
  • Spatial biology
  • mRNA and cDNA synthesis
    • mRNA synthesis
      • mRNA synthesis selection guide
      • mRNA synthesis FAQs
      • Takara IVTpro mRNA Synthesis System
        • Cloning Kit for mRNA Template
        • Takara IVTpro T7 mRNA Synthesis Kit
      • 5-prime capping of mRNA
        • Post-transcriptional capping
        • Co-transcriptional capping
      • Download resources
        • Sign up to download our infographic
      • Webinar: Streamlining your IVT workflow to maximize mRNA yields
    • cDNA synthesis
      • Premium total and poly A+ RNA
      • SMARTer RACE 5'/3' Kit
      • Cloning antibody variable regions
  • Gene function
    • Gene editing
      • Gene editing product finder
      • Gene editing tools and information
        • sgRNA design tools
        • Tools for successful CRISPR/Cas9 genome editing
        • Gene editing posters
        • Customer data for Guide-it products
        • How to design sgRNA sequences
        • Introduction to the CRISPR/Cas9 system
        • Gene editing of CD3+ T cells and CD34+ HSCs
      • CRISPR/Cas9 knockouts
        • Mutation detection kit comparison
        • Screening for effective guide RNAs
        • Monoallelic versus biallelic mutants
        • Indel identification kit for mutation characterization
      • CRISPR/Cas9 knockins
        • Choosing an HDR template format
        • Homology-directed repair FAQs
        • Mouse CRISPR knockin protocol
        • Site-specific gene knockins using long ssDNA
        • Efficient CRISPR/Cas9-mediated knockins in iPS cells
        • Oligo design tool for detecting precise insertions
          • Oligo design tool user guide (insertions)
      • Genome-wide screening
        • CRISPR library screening
        • CRISPR library screening webinar
        • Phenotypic screen using sgRNA library system
      • Creating and screening for SNPs
        • SNP detection with knockin screening kit
        • Oligo design tool for SNP screening
          • Oligo design tool user guide (SNPs)
        • Sign up: SNP engineering webinar
        • Guide-it SNP Screening Kit FAQs
      • CRISPR/Cas9 delivery methods
        • Electroporation-grade Cas9 for editing in diverse cell types
        • CRISPR/Cas9 gene editing with AAV
        • CRISPR/Cas9 gesicles overview
        • Cas9 Gesicles—reduced off-target effects
        • sgRNA-Cas9 delivery to many cell types
        • Tet-inducible Cas9 for gene editing
      • Cre recombinase
        • Control your Cre recombinase experiments
        • Fast Cre delivery with gesicle technology
    • Viral transduction
      • Recombinant virus comparison
      • Product finder
      • Transduction posters
      • Lentivirus
        • Webinars
          • Webinar: Cellular reprogramming of cancer cells for immunotherapy
          • Lentiviral particles webinar
        • Customizable SARS-CoV-2 pseudovirus
        • Lenti-X FAQs
        • Lentiviral workflow
        • Lentiviral products guide
        • Lentivirus biosafety
        • Lentiviral tips
        • Lentiviral vectors
        • Lenti-X packaging
        • High-throughput lentivirus production
        • Lenti-X Concentrator
        • Lentiviral titration
        • Lenti-X GoStix Plus video protocols
        • Lenti-X GoStix Plus FAQs
        • Rapid lentivirus titration by p24 ELISA
        • Lentiviral particles
        • Lentiviral particles—fluorescent
        • Lentiviral particles FAQs
      • Retrovirus
        • Retroviral products
        • Retro-X FAQs
        • Retro-X packaging
        • Retro-X Concentrator
      • Adeno-associated virus
        • AAV workflow
        • AAV products
        • AAV FAQs
        • AAV tech notes
          • Customer data: Purified AAV9 delivery (mouse brain)
          • Customer data: Purified AAV9 delivery (songbird brain)
          • Serotype-independent AAV vector purification
          • Customer data: Purified AAV2 delivery (mouse brain)
        • AAV videos
          • AAV2 purification video
          • AAVpro "All Serotypes" protocols
        • AAVpro Concentrator overview
      • Adenovirus
        • Adenoviral FAQs
        • Adenoviral products
        • Fastest, easiest adenoviral system ever
        • Tet-inducible adenovirus
        • Adenovirus purification kits
        • Adenovirus purification mega-scale
        • Adenovirus rapid titer
        • Adenoviral titration
    • T-cell transduction and culture
      • Technology overview
      • Adoptive T-cell therapy (ACT)
      • RetroNectin FAQs
      • Hematopoietic cell transduction
      • T-cell expansion
      • Serum-free T-cell culture
      • CultiLife culture bags protocol
      • Cytokine analysis
    • Inducible systems
      • iDimerize systems
        • Inducible protein-protein interactions—iDimerize systems
        • iDimerize systems journal club
        • iDimerize in vivo protocol
        • iDimerize systems citations
        • ARGENT cell signaling regulation kits from ARIAD
      • ProteoTuner systems
        • ProteoTuner technology overview
        • ProteoTuner citations
        • Inducible protein stabilization systems product selection guide
      • Tet-inducible systems
        • Tet systems product selection guide
        • Tet systems overview
        • Tet-One technology overview
        • Tet-On 3G plasmid system kit components
        • Tet-On 3G lentiviral system kit components
        • Tet system webinars
    • Transfection reagents
      • Xfect Transfection Reagent
      • Transfection tips
      • Cell lines transfected with the Xfect reagent
      • Protein transfection FAQs
      • Xfect RNA Transfection Reagent
      • Transfection reagent products
      • Protocol: transfection of cerebellar slice cultures with Xfect reagent
      • Calcium phosphate transfection of neurons
    • Fluorescent proteins
      • Fluorescent protein vector finder
      • Fluorescent protein excitation and emission maxima
      • Fluorescent protein antibodies selection guide
      • Fluorescent protein antibody citations
        • GFP antibody citations
        • RFP antibody citations
      • Fluorescent protein quick guide
      • Fluorescent retroviral expression vectors
      • Verify miRNA expression
      • Find EGFP vector alternatives
    • Cell biology assays
      • Technical notes
        • Cell viability and proliferation measurement
      • Citations
  • Stem cell research
    • Overview
      • Stem cell research products
      • Stem cell media products
      • Hepatocyte products
      • iPS cell to hepatocyte differentiation overview
    • Protocols
      • Hepatocytes
        • Video protocols for hiPS-HEP v2 cells
        • Getting started with hepatocyte differentiation
      • Pluripotent stem cells
        • Single-cell cloning with DEF-CS 500 Culture System
        • Transferring iPSCs on MEFs to DEF-CS
        • Transferring iPSCs from other media to DEF-CS
        • Spin embryoid body formation
        • Reprogramming PBMCs
        • Reprogramming fibroblasts
      • Cardiomyocytes
        • Cardiomyocytes in FLIPR 384-well plate format
        • Cardiomyocytes on the Patchliner system
        • Cardiomyocytes on the Maestro MEA system
        • Cardiomyocytes on the MED64 MEA system
        • Cardiomyocytes on the CardioExcyte 96 system
        • Cardiomyocytes on the xCELLigence RTCA CardioECR system
    • Applications
    • Technical notes
      • Pluripotent stem cells
        • Using the DEF-CS system to culture human iPS cells
        • Comparison of the Cellartis DEF-CS system with other vendors' human iPS cell culture systems
        • Reprogramming PBMCs
        • Reprogramming fibroblasts
      • Gene editing in hiPS cells
        • Tagging an endogenous gene with AcGFP1 in hiPS cells
        • Tagging an endogenous gene with a myc tag in hiPS cells
        • Generating clonal hiPS cell lines deficient in CD81
        • Introducing a tyrosinemia-related SNP in hiPS cells
        • Inserting an expression cassette into the AAVS1 locus in hiPS cells
        • Editing hiPS cells using electroporation
        • Editing hiPS cells using gesicle technology
        • Single-cell cloning of hiPS cells
      • Organoids
        • Retinal organoid differentiation from iPSCs cultured in the Cellartis DEF-CS 500 Culture System
        • Liver organoid differentiation from iPSCs for prediction of drug-induced liver injury
        • Generation of embryonic organoids using NDiff 227 neural differentiation medium
      • Beta cells
        • Beta cells for disease modeling
      • Hepatocytes
        • hiPS-HEP cells for disease modeling
        • hiPS-HEP cells for drug metabolism studies
        • Power medium for long-term human primary hepatocyte culture
        • iPS cell to hepatocyte differentiation system
      • Cardiomyocytes
        • Making engineered heart tissue with cardiomyocytes
      • Neural stem cells
        • RHB-A neural stem cell medium
    • Posters
    • Webinars
      • Using hiPS gene editing to create a tyrosinemia disease model
    • Videos
      • Hepatocyte offerings
    • FAQs
      • Cellartis DEF-CS 500 Culture System FAQs
      • Cellartis enhanced hiPS-HEP FAQs
      • Cellartis iPS Cell to Hepatocyte Differentiation System FAQs
    • Citations
      • Cellartis MSC Xeno-Free Culture Medium
      • Cellartis Power Primary HEP Medium
      • Cellartis DEF-CS 500 Culture System
      • Cellartis Enhanced hiPS-HEP cells
      • Cellartis hPS cell-derived cardiomyocytes
      • Cellartis iPS Cell to Hepatocyte Differentiation System
      • GS1-R
      • 2i mES/iPSC medium
      • iMatrix-511
      • 3i mES/iPSC medium
      • NDiff 227
      • NDiff N2
      • RHB-A
      • STEM101
      • STEM121
      • STEM123
    • Selection guides
      • Stem cell antibody selection guide
      • Stem cell media product finder
      • Stem cell tools product finder
      • Hepatocyte product finder
  • Protein research
    • Capturem technology
      • Capturem protocols
      • Capturem tech notes and applications
      • FAQs about Capturem technology
      • Capturem technology citations
      • Capturem posters
    • Antibody immunoprecipitation
      • IP and Co-IP of cardiac voltage-gated ion channel proteins
      • Tech note: thiophilic antibody purification resins
      • Tech note: IP and Co-IP
    • His-tag purification
      • Purification methods overview
      • TALON resin selection guide
      • Selection guide: His60 resin
      • xTractor Buffer is optimized for superior protein yield
      • Why tag a protein?
      • Tech note: cobalt resin
      • Simplified purification of active, secreted his-tagged proteins
      • Overview: His60
      • Tech note: Capturem technology
      • Tech note: Capturem large volume
      • Magnetic beads
      • FAQs: TALON
      • Protocols
        • Video: Capturem his maxiprep
        • Video: Capturem his miniprep
        • Visual protocol: Capturem his maxiprep
        • Visual protocol: Capturem his miniprep
        • Capturem nickel column reagent compatibility
        • TALON reagent compatibility
        • His60 reagent compatibility
        • TALON: Native vs denaturing purification
        • Protocol: denaturing purification with TALON resin, imidazole elution
        • Protocol: native purification with TALON resin, imidazole elution
        • Protocol: native purification with TALON resin, pH elution
    • Other tag purification
      • Streptavidin-based enrichment using Capturem technology
      • Selection guide: peptide tags
      • Myc-tagged protein purification overview
      • GST-tagged protein purification overview
    • Phosphoprotein and glycoprotein purification
      • Non-tagged protein purification overview
      • Phosphoprotein purification overview
    • Matchmaker Gold yeast two-hybrid systems
      • Matchmaker Gold Yeast Two-Hybrid System
      • Make your own library for yeast two-hybrid screening
      • Mate and Plate yeast two-hybrid cDNA libraries
      • Aureobasidin A for improved selectable drug resistance in yeast
    • Expression systems
      • Protein expression overview
      • Insect expression overview
      • Mammalian expression overview
      • pHEK293 Ultra expression overview
      • OKT3 expression in mammalian cells
      • Bacterial expression overview
  • PCR
    • Citations
      • PrimeSTAR HS
      • EmeraldAmp MAX
      • Terra PCR Direct
      • EmeraldAmp GT
      • Takara Ex Taq
      • PrimeSTAR Max
      • PrimeSTAR GXL
      • Takara LA Taq
      • SpeedSTAR HS
      • Takara Taq and Taq HS
      • Titanium Taq
    • PCR selection guide
    • PCR enzyme brochure
    • Technical notes
      • Rapid, high-performance multiplex PCR
      • EmeraldAmp outperforms MyTaq Red mix
      • Fast and accurate PCR
      • Methylation studies
      • Hot-start PCR
      • Long-range PCR with LA Taq
      • Direct PCR from human nail
      • Direct PCR from meat samples
      • Megaprimer PCR with PrimeSTAR GXL
      • Amplifying GC-rich templates
      • Titanium Taq for high-throughput genotyping
      • Colony PCR in under an hour
      • High-throughput endpoint PCR
      • Direct PCR from blood
      • PrimeSTAR GXL for targeted sequencing
      • Detecting somatic mosaicism using massively parallel sequencing
    • FAQ
      • Primer design
      • Optimization
      • Troubleshooting
      • Applications and conditions
      • Shipping, storage, and handling
    • Go green with lyophilized enzymes
  • Cloning
    • Automated In-Fusion Cloning
    • In-Fusion Cloning general information
      • In-Fusion Cloning overview
      • In-Fusion Cloning guide
      • In-Fusion Cloning and competition
        • In-Fusion Snap Assembly vs. GeneArt Gibson Assembly HiFi
        • In-Fusion Snap Assembly vs. NEBuilder HiFi
        • Sequence accuracy in seamless cloning
        • Choosing a seamless cloning method
        • Improving background over Gibson Assembly
        • A successful alternative to ligation cloning
        • Single- and multiple-insert cloning
        • Easy cloning into lentiviral vectors
        • Outperforming TOPO cloning
      • In-Fusion Cloning citations
      • Stellar Competent Cells product overview and performance data
      • EcoDry reagents and sustainability
    • Primer design and other tools
      • Seamless cloning primer design
      • In-Fusion Cloning tutorials
        • Cloning one or more fragments
        • Deleting a sequence
        • Inserting a sequence
        • Deleting and replacing a sequence
      • In-Fusion molar ratio calculator
      • Simulate your construct
    • In‑Fusion Cloning tips and FAQs
    • Applications and technical notes
      • In-Fusion Cloning applications collection
      • Efficient multiple-fragment cloning
      • Mutagenesis with In-Fusion Cloning
      • Rapid, high-throughput cloning for antibody development
      • Solve a synthesis challenge with easy multiple-insert cloning
      • Direct cloning into large vectors
      • Simplified insertion of a GFP-encoding cassette into a 100-kb plasmid
      • Efficient cloning for sgRNA/Cas9 plasmids
      • In-Fusion Cloning of sgRNAs
      • De novo insertion of small fusion protein tags
    • Sign up to stay updated
    • Traditional molecular cloning
      • Restriction enzyme overview
        • General information about restriction enzymes
        • Star activity of restriction enzymes
        • Inactivation of restriction enzymes
        • Buffer activity with restriction enzymes
        • Universal buffers for double digestion with restriction enzymes
        • Restriction enzymes affected by methylation
        • Methylation-sensitive restriction enzymes
        • QC of restriction enzymes
      • Ligation cloning overview
      • Ligation product guide
    • In-Fusion Cloning webinars
  • Nucleic acid purification
    • Nucleic acid extraction webinars
    • Product demonstration videos
    • Product finder
    • Plasmid kit selection guide
    • Plasmid purification
      • NucleoSpin Plasmid Transfection-grade
      • NucleoSnap Plasmid Midi
      • NucleoBond Xtra Midi/Maxi
      • EF plasmid purification overview
    • Genomic DNA purification
      • Tissue
        • NucleoSpin Tissue
        • NucleoSpin DNA RapidLyse
        • NucleoSpin Tissue XS
        • NucleoMag DNA Swab
        • NucleoBond HMW DNA
        • NucleoSpin DNA Lipid Tissue
      • FFPE
        • NucleoMag DNA FFPE
        • NucleoSpin 96 DNA FFPE
      • Blood and plasma
        • NucleoMag Blood
        • NucleoSnap cfDNA
        • NucleoSpin cfDNA XS
        • NucleoMag cfDNA
        • NucleoSpin cfDNA Midi
      • Plant
        • NucleoMag 384 Plant
        • NucleoSpin Plant II
      • Other organisms and samples
        • NucleoMag DNA Bacteria
        • NucleoMag DNA Food
        • NucleoSpin DNA Insect
        • NucleoSpin Microbial DNA
    • DNA/RNA cleanup and extraction
      • NucleoSpin Gel and PCR XS product overview
      • NucleoSpin Gel and PCR Clean-up
      • NucleoMag NGS Clean-up and Size Select
      • NucleoSpin RNA Clean-up
    • RNA purification
      • RNA purification overview
      • NucleoSpin RNA Plus
      • NucleoSpin RNA Plus XS
      • NucleoSpin RNA
      • NucleoProtect RNA
      • NucleoSpin miRNA
      • NucleoSpin RNA Blood
      • NucleoSpin miRNA Plasma
      • NucleoZOL for RNA isolation
      • High-throughput RNA isolation from FFPE samples
      • NucleoSpin RNA Plant and Fungi
    • RNA purification kit finder
    • Viral DNA and RNA purification
      • Nucleic acid detection from wastewater
      • NucleoSpin VET
      • NucleoMag VET
      • NucleoMag Virus
      • NucleoMag Pathogen
    • Parallel DNA, RNA & protein
      • NucleoSpin RNA/Protein
      • NucleoSpin TriPrep
    • Automated DNA and RNA purification
      • Application notes, by sample type
        • Plasmid purification
        • DNA cleanup
        • DNA from cells and tissues
        • RNA from cells and tissues
        • DNA from blood and bodily fluids
        • DNA and RNA from plants, fungi, and food
        • Viral RNA and DNA purification
      • Application notes, by platform
        • Eppendorf
        • Tecan
        • Hamilton
        • Thermo Fisher Scientific
        • MASMEC Biomed
    • Accessory selection guides
      • Sample homogenization beads
      • NucleoBond racks selection guide
    • Microbiome
      • NucleoMag DNA Microbiome
      • NucleoSpin Soil
      • NucleoSpin 8/96 Soil
      • NucleoSpin DNA Stool
      • NucleoSpin 96 DNA Stool
      • NucleoMag DNA/RNA Water
      • NucleoSpin eDNA Water
      • NucleoBond RNA Soil
      • NucleoSpin RNA Stool
  • Antibodies and ELISA
    • Osteocalcin focus
  • Real-time PCR
    • Download qPCR resources
      • Download our mycoplasma white paper
      • Download our mycoplasma infographic
    • Overview
      • One-step RT-qPCR kits
      • Two-step RT-qPCR kits
      • Probe-based qPCR kits
      • TB Green-based qPCR kits
      • Videos: qPCR analysis for challenging inputs
      • qRT-PCR to detect RNA present at low levels
    • Product finder
    • Reaction size guidelines
    • Real-time PCR products brochure
    • Real-time PCR tutorial videos
    • Guest webinar: extraction-free SARS-CoV-2 detection
    • Technical notes
      • Unbiased preamplification of limited samples
      • Accurate gene expression analysis with TB Green Premix Ex Taq II
      • Efficient quantification of human gene expression with PrimeScript Reverse Transcriptase
      • Rapid qPCR analysis from blood samples using PrimeScript Reverse Transcriptase
      • Monitoring siRNA knockdown
      • qPCR without optimization using TB Green Premix Ex Taq
      • Fast synthesis of cDNA templates for real-time RT-PCR
      • Specific, consistent real-time PCR with TB Green Premix Ex Taq II
      • Mir-X microRNA quantification
    • FAQs
New products
Need help?
Contact Sales
Learn more about our pico-input SMARTer RNA-seq products. SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian
Tech Note

SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian: improved ease of use and sequencing performance for whole transcriptome analysis of high-quality or degraded samples

  • A versatile solution for low-input total RNA-seq
    Kit accommodates 250 pg–10 ng inputs of total RNA of any quality (intact or degraded).
  • Superior sequencing performance
    Reconfigured sequencing libraries perform well on all Illumina platforms (including NextSeq® and HiSeq® 3000/4000), achieving a high %PF without the addition of PhiX.
  • Improved ease of use
    New PCR buffer formulation makes bead purification easier.
  • High-quality data from challenging samples
    Kit yields improved sequencing metrics from FFPE RNA.
Introduction Results Summary Methods References

Introduction  

Obtaining an accurate portrait of expression levels for coding and non-coding RNAs from small sample inputs carries potential for both the fulfillment of basic research objectives and the development of novel therapeutics and clinical diagnostic solutions. While next-generation sequencing (NGS) technology has contributed greatly to our understanding of cellular mRNA composition and dynamics, it has also revealed the existence of a vast assortment of non-coding RNAs that play diverse roles in processes such as gene expression regulation (Mattick and Makunin 2006; Kornienko et al. 2013), and are implicated in the development of various human diseases (Hindorff et al. 2009; Wapinski and Chang 2011). Whereas oligo(dT) priming is typically used to capture polyadenylated mRNA for NGS, random priming allows for capture of both coding and non-coding RNA and is often the only feasible option available for processing degraded RNA inputs, such as those obtained from formalin-fixed, paraffin-embedded (FFPE) samples or liquid biopsies. However, a significant challenge associated with random priming is that it also captures ribosomal and mitochondrial RNA molecules, which are typically present in great abundance but not of interest to researchers.

To enable NGS-based analysis of coding and non-coding RNA (i.e., total RNA-seq) from picogram inputs, we previously developed the SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian (referred to below as “Pico v1”), which incorporates a novel technology that enables removal of ribosomal cDNA following cDNA synthesis (as opposed to direct removal of corresponding rRNA molecules prior to reverse transcription).

In keeping with our tradition of continuously refining and improving the performance of our products, we have subsequently developed the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (referred to as “Pico v2”; see workflow in Figure 1). Features that distinguish the Pico v2 kit from its predecessor include superior sequencing performance—particularly for NextSeq and MiniSeq™ instruments that use two-channel SBS technology and for HiSeq 3000/4000—and a new PCR buffer formulation enabling a more user-friendly library-purification process.

 

Schematic of technology in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Figure 1. Schematic of technology in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. SMART technology is used in this ligation-free protocol to preserve strand-of-origin information. Random priming (represented as the green N6 Primer) allows the generation of cDNA from all RNA fragments in the sample, including rRNA. When the SMARTScribe Reverse Transcriptase (RT) reaches the 5' end of the RNA fragment, the enzyme’s terminal transferase activity adds a few non-templated nucleotides to the 3' end of the cDNA (shown as Xs). The carefully designed Pico v2 SMART Adapter (included in the SMART TSO Mix v2) base-pairs with the non-templated nucleotide stretch, creating an extended template to enable the RT to continue replicating to the end of the oligonucleotide. The resulting cDNA contains sequences derived from the random primer and the Pico v2 SMART Adapter used in the reverse transcription reaction. In the next step, a first round of PCR amplification (PCR1) adds full-length Illumina adapters, including barcodes. The 5' PCR Primer binds to the Pico v2 SMART Adapter sequence (light purple), while the 3' PCR Primer binds to sequence associated with the random primer (green). The ribosomal cDNA (originating from rRNA) is then cleaved by ZapR v2 in the presence of the mammalian-specific R-Probes v2. This process leaves the library fragments originating from non-rRNA molecules untouched, with priming sites available on both 5' and 3' ends for further PCR amplification. These fragments are enriched via a second round of PCR amplification (PCR2) using primers universal to all libraries. The final library contains sequences allowing clustering on any Illumina flow cell (see details in Figure 2).

The improved sequencing performance provided by the Pico v2 kit is due to reconfiguration of the resulting sequencing libraries (Figure 2). Libraries produced with the Pico v2 kit are generated such that bases corresponding to the random-priming site (located at 3' end of each RNA molecule) are read at the beginning of Read 1, while bases corresponding to nontemplated nucleotides added during the template-switching process are read at the beginning of Read 2. This is essentially a reverse orientation relative to libraries generated with the original version of the kit (in which bases associated with template-switching are read at the beginning of Read 1). The reconfigured libraries produced by the Pico v2 kit provide greater nucleotide diversity at the beginning of Read 1. This in turn eliminates the necessity of adding significant amounts of PhiX control library to the sequencing reaction to achieve a higher percentage of clusters passing filter (%PF), yielding more meaningful data per sequencing run and reducing sequencing costs.

 

Structural features of final libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Figure 2. Structural features of final libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. The adapters added using 5' PCR Primer HT and 3' PCR Primer HT contain sequences allowing clustering on any Illumina flow cell (P7 shown in light blue, P5 shown in red), Illumina TruSeq® HT indexes (Index 1 [i7] sequence shown in orange and Index 2 [i5] sequence shown in yellow), as well as the regions recognized by sequencing primers Read Primer 2 (Read 2, purple) and Read Primer 1 (Read 1, green). Read 1 generates sequences antisense to the original RNA, while Read 2 yields sequences sense to the original RNA (orientation of original RNA denoted by 5' and 3' in dark blue). The first three nucleotides of the second sequencing read (Read 2) are derived from the Pico v2 SMART Adapter (shown as Xs). These three nucleotides must be trimmed prior to mapping if performing paired-end sequencing.

Results  

Improved sequencing performance with the Pico v2 kit

Even with an industry-leading product such as the SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian, there is always room for improvement. As described above, a limitation of the Pico v1 kit is that it generates sequencing libraries with relatively low nucleotide diversity at the beginning of Read 1. This low nucleotide diversity results from the nontemplated nucleotides that facilitate adapter binding and incorporation via the template-switching mechanism (see Figure 1, above). Having low nucleotide diversity at the beginning of Read 1 poses challenges for sequencing because the first 25 sequencing cycles are used to determine which clusters pass filtering, and is particularly problematic on platforms using two-channel SBS technology (e.g., NextSeq and MiniSeq). Challenges associated with low library diversity can be mitigated by spiking in a suitable amount of PhiX control library—we recommend adding PhiX at concentrations as high as 30% depending on the platform—however this reduces the amount of relevant sequencing reads generated per sequencing run, consuming time and increasing sequencing costs.

To demonstrate the improved sequencing performance of the Pico v2 kit vs. the original kit, sequencing libraries were generated from various inputs of total RNA using each kit according to the corresponding user manuals and sequenced on both NextSeq and MiniSeq platforms (Figure 3). Whereas libraries generated with the Pico v1 kit yielded %PF values of 81.3% and 77.1% and quantities of reads passing filter that met or approached established benchmarks for NextSeq and MiniSeq instruments, respectively, libraries generated with the Pico v2 kit achieved %PF values of 88.3% and 90.5%, with quantities of reads passing filter that exceeded performance specifications for each platform by a considerable margin. These results demonstrate that the Pico v2 kit provides superior sequencing performance relative to Pico v1.

Improved pass-filter rates (%PF) with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Figure 3. Improved pass-filter rates (%PF) with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Libraries generated with the Pico v1 or Pico v2 kits were pooled and run on NextSeq 500 or MiniSeq instruments, as indicated. For each graph, blue boxplots indicate the distribution of cluster densities for unfiltered (i.e., raw) reads, while the green boxplots indicate the distribution of cluster densities for reads that passed filtering. Quantities of reads passing filter (in millions) and %PF values for each sequencing run are included above each graph. The expected number of reads passing filter according to Illumina specifications was 130 million reads for runs on the NextSeq and 25 million reads for runs on the MiniSeq. Proportions of reads that aligned to PhiX sequences ranged from 0.5% to 1.15% for all sequencing runs. As indicated in the graphs, libraries generated with the Pico v2 kit achieved higher %PF values for both Illumina platforms relative to libraries generated with the Pico v1 kit, and yielded quantities of reads passing filter that greatly exceeded the Illumina specifications.

Improved ease of use during library purification with the Pico v2 kit

As with many NGS library prep kits, Pico v1 and Pico v2 both employ magnetic AMPure beads for multiple library purification steps. Customer feedback regarding the Pico v1 kit indicated that formation, drying, and resuspension of bead pellets during library purification was a common pain point in the kit workflow. To address this, we optimized the PCR buffer for greater compatibility with AMPure bead purification while maintaining its performance for PCR. The new buffer formulation, SeqAmp CB PCR Buffer (CB = “compatible with beads”), allows for the beads to separate more quickly, yielding a tighter bead pellet that dries more uniformly and is easier to resuspend (Figure 4).

Improved bead-pellet formation with new SeqAmp CB PCR Buffer

Figure 4. Improved bead-pellet formation with new SeqAmp CB PCR Buffer. The PCR buffer included in the Pico v2 kit was re-formulated to allow for faster, tighter bead-pellet formation. Following magnetic separation for a fixed period, bead pellets formed in the new SeqAmp CB PCR Buffer (right) are tighter than those formed in the original PCR buffer (left). Tighter bead pellets tend to dry more evenly and are easier to resuspend than pellets that are broader and more diffuse.

Comparison of sequencing metrics for FFPE samples processed with Pico v1 and Pico v2

To further demonstrate the enhanced capabilities of the Pico v2 kit relative to its predecessor, particularly for analysis of challenging samples, sequencing libraries were generated from 1-ng and 10-ng inputs of human lung total RNA (DV200 = 68%) obtained from FFPE tissue and sequenced on a NextSeq 500 instrument. In comparison with Pico v1, library yields from the Pico v2 kit were considerably greater for both input amounts (Figure 5A). For the 1-ng input amount, sequencing data for the Pico v2 library identified thousands more transcripts than data for the Pico v1 library, whereas numbers of transcripts identified were comparable at the 10-ng input level. In contrast with the data generated using Pico v1, numbers of transcripts identified for 1-ng and 10-ng inputs using Pico v2 were very similar, suggesting that Pico v2 offers superior sensitivity for detection of low-abundance transcripts in low-input samples.

Proportions of reads mapping to various RNA species were comparable across kits and input amounts, however libraries generated with the Pico v2 kit yielded a lower proportion of reads mapping to rRNA and mtRNA relative to the Pico v1 libraries. For both input amounts, the duplicate rate was lower for Pico v2 libraries, and for the 10-ng input in particular the duplicate rate was ~50% lower. Comparison of transcript expression levels across input amounts for each version of the kit indicated that the correlation was much stronger for the Pico v2 libraries vs. the Pico v1 libraries (Pearson = 0.96 and Spearman = 0.83 vs. Pearson = 0.91 and Spearman = 0.67, Figure 5B). These results suggest that Pico v2 outperforms Pico v1 by providing higher library yields, improved sensitivity, reduced representation of rRNA and mtRNA sequences, and a stronger correlation in gene expression measurements across input amounts.

 A

Sequencing Alignment Metrics for 1-ng and 10-ng Inputs of Total RNA
Kit Pico v1 Pico v2 Pico v1 Pico v2
RNA source Human lung FFPE total RNA
Input amount (ng) 1 10
Library yield (ng/µl) 0.4 3.2 4.4 21.7
Number of reads (millions) 8.25 (paired-end reads)
Number of transcripts >1 FPKM 8,481 9,916 10,096 9,878
Number of transcripts >0.1 FPKM 14,347 19,594 20,724 21,325
Proportion of reads (%)
Exonic 15.9 15.0 16.4 14.9
Intronic 50.5 53.9 54.9 57.9
Intergenic 12.1 12.1 12.8 12.9
rRNA 15.0 13.3 10.3 9.2
Mitochondrial 1.3 0.9 1.5 0.7
Duplicate rate (%) 79.9 67.2 60.1 34.3

Improved reproducibility with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Figure 5. Improved sensitivity and reproducibility with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Sequencing libraries were generated from 1-ng and 10-ng inputs of total RNA extracted from human lung FFPE tissue using both the Pico v1 and Pico v2 kits, and sequenced on a NextSeq 500 instrument. Panel A. Sequencing metrics for libraries generated from 1-ng or 10-ng inputs using each kit. For both input amounts, the Pico v2 kit resulted in greater library yields, a lower proportion of reads mapping to rRNA and mtRNA, and a lower duplicate rate. For the 1-ng input, sequencing data from the Pico v2 library also identified thousands more transcripts than sequencing data from the Pico v1 library, indicating a higher sensitivity for Pico v2. Panel B. Comparison of transcript expression levels across input amounts. Higher reproducibility was observed between 1-ng and 10-ng inputs for data generated with the Pico v2 kit vs. data generated using the Pico v1 kit. FPKM values are shown on a Log10 scale. Transcripts represented in only one library can be seen along the X- and Y-axes of the scatter plots.

Summary  

To better serve the scientific community, we have incorporated several design improvements into the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian that provide superior sequencing performance and a more user-friendly workflow relative to its predecessor. Sequencing libraries generated with the Pico v2 kit demonstrate a higher %PF rate relative to libraries produced with the original kit while requiring little or no addition of PhiX. This improvement will allow researchers to extract more meaningful data from each sequencing run, saving time and conserving resources. The Pico v2 kit also outperforms the Pico v1 kit by providing higher library yields, improved sensitivity, and greater consistency across input amounts, even for challenging samples obtained from FFPE tissue. Optimization of the PCR buffer included with the kit has streamlined the various bead-purification steps, which should also help reduce operational costs for labs performing RNA-seq at high throughput.

Methods  

Comparison of pass-filter rates for Pico v1 and Pico v2 libraries

To compare the %PF rates for libraries generated with the Pico v1 and Pico v2 kits, sequencing libraries were generated from varying input types and amounts of total RNA and pooled together. Pools of sequencing libraries were run on the NextSeq 500 using the NextSeq 500/550 Mid Output Kit v2 (150 cycles; Cat. # FC-404-2001) with 2 x 75-bp paired-end reads, and on the MiniSeq using the MiniSeq High Output Kit (75 cycles; Cat. # FC-420-1001) with 2 x 38-bp paired-end reads.

Comparison of sequencing metrics for FFPE samples

To evaluate the performance of the Pico v1 and Pico v2 kits with FFPE samples, total RNA was extracted from a 5-µm curl of FFPE human lung tissue (Cureline) using a NucleoSpin totalRNA FFPE kit (Takara Bio, Cat. # 740982.10). Prior to library preparation, RNA integrity was evaluated on an Agilent Bioanalyzer using an Agilent RNA 6000 Pico Kit (Cat. # 5067-1513), yielding a DV200 value of 68%. Libraries were generated from the extracted RNA using both the Pico v1 and Pico v2 kits without additional RNA fragmentation (protocol option 2). Libraries were sequenced on a NextSeq 500 using the NextSeq 500/550 Mid Output Kit v2 and resulting sequencing datasets were downsampled to 8.25 million paired-end reads.

Sequence analysis

Reads from all libraries were trimmed and mapped to mammalian rRNA and the human mitochondrial genomes using CLC Genomics Workbench. The remaining reads were subsequently mapped using CLC to the human (hg19) genomes with RefSeq annotation. All percentages shown, including the number of reads that map to introns, exons, or intergenic regions, are percentages of the total reads in the library. The number of transcripts identified in each library was determined by the number of transcripts with an FPKM greater than or equal to 1 or 0.1, as shown in Figure 5A. Scatter plots were generated using FPKM values from CLC mapping to the transcriptome. To identify transcripts found in only one replicate (dropouts), 0.001 was added to each value prior to graphing.

References  

Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U. S. A. 106, 9362–7 (2009).

Kornienko, A. E., Guenzl, P. M., Barlow, D. P. & Pauler, F. M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 11, 59 (2013).

Mattick, J. S. & Makunin, I. V. Non-coding RNA. Hum Mol Genet 15 Spec No, R17–29 (2006).

Wapinski, O. & Chang, H. Y. Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361 (2011).

Related products

Cat. # Product Size Price License Quantity Details
634411 SMARTer® Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian 12 Rxns USD $1198.00

License Statement

ID Number  
425 LIMITED USE LABEL LICENSE: RESEARCH USE ONLY Notice to Purchaser: This product is the subject to a license granted to Takara Bio USA, Inc. and its Affiliates from Caribou Biosciences, Inc., and this product is transferred to the end-user purchaser (“Purchaser”) subject to a “Limited Use Label License” conveying to the Purchaser a limited, nontransferable right to use the product, solely as provided to Purchaser, together with (i) progeny or derivatives of the product generated by the Purchaser (including but not limited to cells), and (ii) biological material extracted or derived from the product or its corresponding progeny or derivatives (including but not limited to cells) (collectively, the product, and (i) and (ii) are referred to as “Material”) only to perform internal research for the sole benefit of the Purchaser. The Purchaser cannot sell or otherwise transfer Material to a third party or otherwise use the Material for any Excluded Use. “Excluded Use” means any and all: (a) commercial activity including, but not limited to, any use in manufacturing (including but not limited to cell line development for purposes of bioproduction), product testing, or quality control; (b) preclinical or clinical testing or other activity directed toward the submission of data to the U.S. Food and Drug Administration, or any other regulatory agency in any country or jurisdiction where the active agent in such studies comprises the Material; (c) use to provide a service, information, or data to a third party with the sole exception of using the Material to conduct in vitro sample preparation, i.e., selectively depleting target cDNAs from a sample either by cleaving or selectively separating such target cDNAs from the sample through the use of the Materials; (d) use for human or animal therapeutic, diagnostic, or prophylactic purposes or as a product for therapeutics, diagnostics, or prophylaxis; (e) activity in an agricultural field trial or any activity directed toward the submission of data to the U.S. Department of Agriculture or any other agriculture regulatory agency; (f) high throughput screening drug discovery purposes (i.e., the screening of more than 10,000 experiments per day) as well as scale-up production activities for commercialization; (g) modification of human germline, including editing of human embryo genomes (with the sole exception of editing human embryonic stem (ES) cell lines for research purposes) or reproductive cells; (h) self-editing; and/or (i) stimulation of biased inheritance of a particular gene or trait or set of genes or traits (“gene drive”). It is the Purchaser’s responsibility to use the Material in accordance with all applicable laws and regulations. For information on obtaining additional rights, including commercial rights, please contact licensing@cariboubio.com or Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA 94710 USA, Attn: Licensing
395
This Product is protected by one or more patents from the family consisting of: US10150985, CA2939621, People's Republic of China Patent: ZL201480077658.0, US10988796, DE602014058059.9, EP3105325, FR3105325, UK3105325, JP6416939 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.  Additional information may be found at https://www.takarabio.com/patents. 
450 This Product is sold under license from JumpCode Genomics, Inc., and is covered by one or more of the following US patents and foreign counterparts as well as pending US and foreign patent applications: 10,604,802; 11,708,606; 11,761,039; PCT/US2015/014242; CA2938669; EP 20192599.7; HK402021031164.3.

The SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian is used to generate strand-specific RNA-seq libraries for Illumina sequencing from 250 pg–10 ng inputs of purified total RNA. This kit incorporates Takara Bio’s proprietary SMART (Switching Mechanism at the 5’ end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. This method was developed to work with either high- or low-quality total RNA, does not require additional rRNA removal methods or kits, and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA—typically present in high abundance following cDNA synthesis from total RNA inputs—makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA. The new library design featured in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian improves sequencing performance compared to the original SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian, particularly for NextSeq® and MiniSeq™ instruments carrying the two-channel SBS technology. This kit includes the Indexing Primer Set HT for Illumina v2; for your convenience, we also offer the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian Components (Cat. #s 634418 and 634419) without indexing primers.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Structural features of final libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. The adapters added using 5' PCR Primer HT and 3' PCR Primer HT contain sequences allowing clustering on any Illumina® flow cell (P7 shown in light blue, P5 shown in red), Illumina TruSeq® HT indexes (Index 1 [i7] sequence shown in orange, and Index 2 [i5] sequence shown in yellow), as well as the regions recognized by sequencing primers Read Primer 2 (Read 2, purple) and Read Primer 1 (Read 1, green). Read 1 generates sequences antisense to the original RNA, while Read 2 yields sequences sense to the original RNA (orientation of original RNA denoted by 5' and 3' in dark blue). The first three nucleotides of the second sequencing read (Read 2) are derived from the Pico v2 SMART Adapter (shown as Xs). These three nucleotides must be trimmed prior to mapping if performing paired-end sequencing.

Back

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved pass-filter rates (%PF) with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Libraries generated with the Pico v1 or Pico v2 kits were pooled and run on NextSeq 500 or MiniSeq instruments, as indicated. For each graph, blue boxplots indicate the distribution of cluster densities for unfiltered (i.e., raw) reads, while the green boxplots indicate the distribution of cluster densities for reads that passed filtering. Quantities of reads passing filter (in millions) and %PF values for each sequencing run are included above each graph. The expected number of reads passing filter according to Illumina specifications was 130 million reads for runs on the NextSeq and 25 million reads for runs on the MiniSeq. Proportions of reads that aligned to PhiX sequences ranged from 0.5% to 1.15% for all sequencing runs. As indicated in the graphs, libraries generated with the Pico v2 kit achieved higher %PF values for both Illumina platforms relative to libraries generated with the Pico v1 kit, and yielded quantities of reads passing filter that greatly exceeded the Illumina specifications.

Back

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of technology in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. SMART technology is used in this ligation-free protocol to preserve strand-of-origin information. Random priming (represented as the green N6 Primer) allows the generation of cDNA from all RNA fragments in the sample, including rRNA. When the SMARTScribe Reverse Transcriptase (RT) reaches the 5' end of the RNA fragment, the enzyme’s terminal transferase activity adds a few non-templated nucleotides to the 3' end of the cDNA (shown as Xs). The carefully designed Pico v2 SMART Adapter (included in the SMART TSO Mix v2) base-pairs with the non-templated nucleotide stretch, creating an extended template to enable the RT to continue replicating to the end of the oligonucleotide. The resulting cDNA contains sequences derived from the random primer and the Pico v2 SMART Adapter used in the reverse transcription reaction. In the next step, a first round of PCR amplification (PCR1) adds full-length Illumina adapters, including barcodes. The 5' PCR Primer binds to the Pico v2 SMART Adapter sequence (light purple), while the 3' PCR Primer binds to sequence associated with the random primer (green). The ribosomal cDNA (originating from rRNA) is then cleaved by ZapR v2 in the presence of the mammalian-specific R-Probes v2. This process leaves the library fragments originating from non-rRNA molecules untouched, with priming sites available on both 5' and 3' ends for further PCR amplification. These fragments are enriched via a second round of PCR amplification (PCR2) using primers universal to all libraries. The final library contains sequences allowing clustering on any Illumina flow cell.

Back

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sensitivity and reproducibility with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Sequencing libraries were generated from 1 ng and 10 ng inputs of total RNA extracted from human lung FFPE tissue using both the Pico v1 and Pico v2 kits, and sequenced on a NextSeq 500 instrument. Panel A. Sequencing metrics for libraries generated from 1 ng or 10 ng inputs using each kit. For both input amounts, the Pico v2 kit resulted in greater library yields, a lower proportion of reads mapping to rRNA and mtRNA, and a lower duplicate rate. For the 1 ng input, sequencing data from the Pico v2 library also identified thousands more transcripts than sequencing data from the Pico v1 library, indicating a higher sensitivity for Pico v2. Panel B. Comparison of transcript expression levels across input amounts. Higher reproducibility was observed between 1 ng and 10 ng inputs for data generated with the Pico v2 kit vs. data generated using the Pico v1 kit. FPKM values are shown on a Log10 scale. Transcripts represented in only one library can be seen along the X- and Y-axes of the scatter plots.

Back

SeqAmp CB PCR buffer improves bead-pellet formation

SeqAmp CB PCR buffer improves bead-pellet formation

Improved bead-pellet formation with new SeqAmp CB PCR buffer. The PCR buffer included in the Pico v2 kit was re-formulated to allow for faster, tighter bead-pellet formation. Following magnetic separation for a fixed period, bead pellets formed in the new SeqAmp CB buffer (right) are tighter than those formed in the original PCR buffer (left). Tighter bead pellets tend to dry more evenly and are easier to resuspend than pellets that are broader and more diffuse.

Back

634411: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

634411: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian
634412 SMARTer® Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian 48 Rxns USD $3966.00

License Statement

ID Number  
425 LIMITED USE LABEL LICENSE: RESEARCH USE ONLY Notice to Purchaser: This product is the subject to a license granted to Takara Bio USA, Inc. and its Affiliates from Caribou Biosciences, Inc., and this product is transferred to the end-user purchaser (“Purchaser”) subject to a “Limited Use Label License” conveying to the Purchaser a limited, nontransferable right to use the product, solely as provided to Purchaser, together with (i) progeny or derivatives of the product generated by the Purchaser (including but not limited to cells), and (ii) biological material extracted or derived from the product or its corresponding progeny or derivatives (including but not limited to cells) (collectively, the product, and (i) and (ii) are referred to as “Material”) only to perform internal research for the sole benefit of the Purchaser. The Purchaser cannot sell or otherwise transfer Material to a third party or otherwise use the Material for any Excluded Use. “Excluded Use” means any and all: (a) commercial activity including, but not limited to, any use in manufacturing (including but not limited to cell line development for purposes of bioproduction), product testing, or quality control; (b) preclinical or clinical testing or other activity directed toward the submission of data to the U.S. Food and Drug Administration, or any other regulatory agency in any country or jurisdiction where the active agent in such studies comprises the Material; (c) use to provide a service, information, or data to a third party with the sole exception of using the Material to conduct in vitro sample preparation, i.e., selectively depleting target cDNAs from a sample either by cleaving or selectively separating such target cDNAs from the sample through the use of the Materials; (d) use for human or animal therapeutic, diagnostic, or prophylactic purposes or as a product for therapeutics, diagnostics, or prophylaxis; (e) activity in an agricultural field trial or any activity directed toward the submission of data to the U.S. Department of Agriculture or any other agriculture regulatory agency; (f) high throughput screening drug discovery purposes (i.e., the screening of more than 10,000 experiments per day) as well as scale-up production activities for commercialization; (g) modification of human germline, including editing of human embryo genomes (with the sole exception of editing human embryonic stem (ES) cell lines for research purposes) or reproductive cells; (h) self-editing; and/or (i) stimulation of biased inheritance of a particular gene or trait or set of genes or traits (“gene drive”). It is the Purchaser’s responsibility to use the Material in accordance with all applicable laws and regulations. For information on obtaining additional rights, including commercial rights, please contact licensing@cariboubio.com or Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA 94710 USA, Attn: Licensing
395
This Product is protected by one or more patents from the family consisting of: US10150985, CA2939621, People's Republic of China Patent: ZL201480077658.0, US10988796, DE602014058059.9, EP3105325, FR3105325, UK3105325, JP6416939 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.  Additional information may be found at https://www.takarabio.com/patents. 
450 This Product is sold under license from JumpCode Genomics, Inc., and is covered by one or more of the following US patents and foreign counterparts as well as pending US and foreign patent applications: 10,604,802; 11,708,606; 11,761,039; PCT/US2015/014242; CA2938669; EP 20192599.7; HK402021031164.3.

The SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian is used to generate strand-specific RNA-seq libraries for Illumina sequencing from 250 pg–10 ng inputs of purified total RNA. This kit incorporates Takara Bio’s proprietary SMART (Switching Mechanism at the 5’ end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. This method was developed to work with either high- or low-quality total RNA, does not require additional rRNA removal methods or kits, and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA—typically present in high abundance following cDNA synthesis from total RNA inputs—makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA. The new library design featured in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian improves sequencing performance compared to the original SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian, particularly for NextSeq® and MiniSeq™ instruments carrying the two-channel SBS technology. This kit includes the Indexing Primer Set HT for Illumina v2; for your convenience, we also offer the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian Components (Cat. #s 634418 and 634419) without indexing primers.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

634412: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

634412: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Back

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Structural features of final libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. The adapters added using 5' PCR Primer HT and 3' PCR Primer HT contain sequences allowing clustering on any Illumina® flow cell (P7 shown in light blue, P5 shown in red), Illumina TruSeq® HT indexes (Index 1 [i7] sequence shown in orange, and Index 2 [i5] sequence shown in yellow), as well as the regions recognized by sequencing primers Read Primer 2 (Read 2, purple) and Read Primer 1 (Read 1, green). Read 1 generates sequences antisense to the original RNA, while Read 2 yields sequences sense to the original RNA (orientation of original RNA denoted by 5' and 3' in dark blue). The first three nucleotides of the second sequencing read (Read 2) are derived from the Pico v2 SMART Adapter (shown as Xs). These three nucleotides must be trimmed prior to mapping if performing paired-end sequencing.

Back

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved pass-filter rates (%PF) with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Libraries generated with the Pico v1 or Pico v2 kits were pooled and run on NextSeq 500 or MiniSeq instruments, as indicated. For each graph, blue boxplots indicate the distribution of cluster densities for unfiltered (i.e., raw) reads, while the green boxplots indicate the distribution of cluster densities for reads that passed filtering. Quantities of reads passing filter (in millions) and %PF values for each sequencing run are included above each graph. The expected number of reads passing filter according to Illumina specifications was 130 million reads for runs on the NextSeq and 25 million reads for runs on the MiniSeq. Proportions of reads that aligned to PhiX sequences ranged from 0.5% to 1.15% for all sequencing runs. As indicated in the graphs, libraries generated with the Pico v2 kit achieved higher %PF values for both Illumina platforms relative to libraries generated with the Pico v1 kit, and yielded quantities of reads passing filter that greatly exceeded the Illumina specifications.

Back

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of technology in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. SMART technology is used in this ligation-free protocol to preserve strand-of-origin information. Random priming (represented as the green N6 Primer) allows the generation of cDNA from all RNA fragments in the sample, including rRNA. When the SMARTScribe Reverse Transcriptase (RT) reaches the 5' end of the RNA fragment, the enzyme’s terminal transferase activity adds a few non-templated nucleotides to the 3' end of the cDNA (shown as Xs). The carefully designed Pico v2 SMART Adapter (included in the SMART TSO Mix v2) base-pairs with the non-templated nucleotide stretch, creating an extended template to enable the RT to continue replicating to the end of the oligonucleotide. The resulting cDNA contains sequences derived from the random primer and the Pico v2 SMART Adapter used in the reverse transcription reaction. In the next step, a first round of PCR amplification (PCR1) adds full-length Illumina adapters, including barcodes. The 5' PCR Primer binds to the Pico v2 SMART Adapter sequence (light purple), while the 3' PCR Primer binds to sequence associated with the random primer (green). The ribosomal cDNA (originating from rRNA) is then cleaved by ZapR v2 in the presence of the mammalian-specific R-Probes v2. This process leaves the library fragments originating from non-rRNA molecules untouched, with priming sites available on both 5' and 3' ends for further PCR amplification. These fragments are enriched via a second round of PCR amplification (PCR2) using primers universal to all libraries. The final library contains sequences allowing clustering on any Illumina flow cell.

Back

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sensitivity and reproducibility with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Sequencing libraries were generated from 1 ng and 10 ng inputs of total RNA extracted from human lung FFPE tissue using both the Pico v1 and Pico v2 kits, and sequenced on a NextSeq 500 instrument. Panel A. Sequencing metrics for libraries generated from 1 ng or 10 ng inputs using each kit. For both input amounts, the Pico v2 kit resulted in greater library yields, a lower proportion of reads mapping to rRNA and mtRNA, and a lower duplicate rate. For the 1 ng input, sequencing data from the Pico v2 library also identified thousands more transcripts than sequencing data from the Pico v1 library, indicating a higher sensitivity for Pico v2. Panel B. Comparison of transcript expression levels across input amounts. Higher reproducibility was observed between 1 ng and 10 ng inputs for data generated with the Pico v2 kit vs. data generated using the Pico v1 kit. FPKM values are shown on a Log10 scale. Transcripts represented in only one library can be seen along the X- and Y-axes of the scatter plots.

Back

SeqAmp CB PCR buffer improves bead-pellet formation

SeqAmp CB PCR buffer improves bead-pellet formation

Improved bead-pellet formation with new SeqAmp CB PCR buffer. The PCR buffer included in the Pico v2 kit was re-formulated to allow for faster, tighter bead-pellet formation. Following magnetic separation for a fixed period, bead pellets formed in the new SeqAmp CB buffer (right) are tighter than those formed in the original PCR buffer (left). Tighter bead pellets tend to dry more evenly and are easier to resuspend than pellets that are broader and more diffuse.

634413 SMARTer® Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian 96 Rxns USD $5216.00

License Statement

ID Number  
425 LIMITED USE LABEL LICENSE: RESEARCH USE ONLY Notice to Purchaser: This product is the subject to a license granted to Takara Bio USA, Inc. and its Affiliates from Caribou Biosciences, Inc., and this product is transferred to the end-user purchaser (“Purchaser”) subject to a “Limited Use Label License” conveying to the Purchaser a limited, nontransferable right to use the product, solely as provided to Purchaser, together with (i) progeny or derivatives of the product generated by the Purchaser (including but not limited to cells), and (ii) biological material extracted or derived from the product or its corresponding progeny or derivatives (including but not limited to cells) (collectively, the product, and (i) and (ii) are referred to as “Material”) only to perform internal research for the sole benefit of the Purchaser. The Purchaser cannot sell or otherwise transfer Material to a third party or otherwise use the Material for any Excluded Use. “Excluded Use” means any and all: (a) commercial activity including, but not limited to, any use in manufacturing (including but not limited to cell line development for purposes of bioproduction), product testing, or quality control; (b) preclinical or clinical testing or other activity directed toward the submission of data to the U.S. Food and Drug Administration, or any other regulatory agency in any country or jurisdiction where the active agent in such studies comprises the Material; (c) use to provide a service, information, or data to a third party with the sole exception of using the Material to conduct in vitro sample preparation, i.e., selectively depleting target cDNAs from a sample either by cleaving or selectively separating such target cDNAs from the sample through the use of the Materials; (d) use for human or animal therapeutic, diagnostic, or prophylactic purposes or as a product for therapeutics, diagnostics, or prophylaxis; (e) activity in an agricultural field trial or any activity directed toward the submission of data to the U.S. Department of Agriculture or any other agriculture regulatory agency; (f) high throughput screening drug discovery purposes (i.e., the screening of more than 10,000 experiments per day) as well as scale-up production activities for commercialization; (g) modification of human germline, including editing of human embryo genomes (with the sole exception of editing human embryonic stem (ES) cell lines for research purposes) or reproductive cells; (h) self-editing; and/or (i) stimulation of biased inheritance of a particular gene or trait or set of genes or traits (“gene drive”). It is the Purchaser’s responsibility to use the Material in accordance with all applicable laws and regulations. For information on obtaining additional rights, including commercial rights, please contact licensing@cariboubio.com or Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA 94710 USA, Attn: Licensing
395
This Product is protected by one or more patents from the family consisting of: US10150985, CA2939621, People's Republic of China Patent: ZL201480077658.0, US10988796, DE602014058059.9, EP3105325, FR3105325, UK3105325, JP6416939 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.  Additional information may be found at https://www.takarabio.com/patents. 
450 This Product is sold under license from JumpCode Genomics, Inc., and is covered by one or more of the following US patents and foreign counterparts as well as pending US and foreign patent applications: 10,604,802; 11,708,606; 11,761,039; PCT/US2015/014242; CA2938669; EP 20192599.7; HK402021031164.3.

The SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian is used to generate strand-specific RNA-seq libraries for Illumina sequencing from 250 pg–10 ng inputs of purified total RNA. This kit incorporates Takara Bio’s proprietary SMART (Switching Mechanism at the 5’ end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. This method was developed to work with either high- or low-quality total RNA, does not require additional rRNA removal methods or kits, and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA—typically present in high abundance following cDNA synthesis from total RNA inputs—makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA. The new library design featured in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian improves sequencing performance compared to the original SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian, particularly for NextSeq® and MiniSeq™ instruments carrying the two-channel SBS technology. This kit includes the Indexing Primer Set HT for Illumina v2; for your convenience, we also offer the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian Components (Cat. #s 634418 and 634419) without indexing primers.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

634413: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

634413: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Back

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Structural features of final libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. The adapters added using 5' PCR Primer HT and 3' PCR Primer HT contain sequences allowing clustering on any Illumina® flow cell (P7 shown in light blue, P5 shown in red), Illumina TruSeq® HT indexes (Index 1 [i7] sequence shown in orange, and Index 2 [i5] sequence shown in yellow), as well as the regions recognized by sequencing primers Read Primer 2 (Read 2, purple) and Read Primer 1 (Read 1, green). Read 1 generates sequences antisense to the original RNA, while Read 2 yields sequences sense to the original RNA (orientation of original RNA denoted by 5' and 3' in dark blue). The first three nucleotides of the second sequencing read (Read 2) are derived from the Pico v2 SMART Adapter (shown as Xs). These three nucleotides must be trimmed prior to mapping if performing paired-end sequencing.

Back

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved pass-filter rates (%PF) with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Libraries generated with the Pico v1 or Pico v2 kits were pooled and run on NextSeq 500 or MiniSeq instruments, as indicated. For each graph, blue boxplots indicate the distribution of cluster densities for unfiltered (i.e., raw) reads, while the green boxplots indicate the distribution of cluster densities for reads that passed filtering. Quantities of reads passing filter (in millions) and %PF values for each sequencing run are included above each graph. The expected number of reads passing filter according to Illumina specifications was 130 million reads for runs on the NextSeq and 25 million reads for runs on the MiniSeq. Proportions of reads that aligned to PhiX sequences ranged from 0.5% to 1.15% for all sequencing runs. As indicated in the graphs, libraries generated with the Pico v2 kit achieved higher %PF values for both Illumina platforms relative to libraries generated with the Pico v1 kit, and yielded quantities of reads passing filter that greatly exceeded the Illumina specifications.

Back

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of technology in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. SMART technology is used in this ligation-free protocol to preserve strand-of-origin information. Random priming (represented as the green N6 Primer) allows the generation of cDNA from all RNA fragments in the sample, including rRNA. When the SMARTScribe Reverse Transcriptase (RT) reaches the 5' end of the RNA fragment, the enzyme’s terminal transferase activity adds a few non-templated nucleotides to the 3' end of the cDNA (shown as Xs). The carefully designed Pico v2 SMART Adapter (included in the SMART TSO Mix v2) base-pairs with the non-templated nucleotide stretch, creating an extended template to enable the RT to continue replicating to the end of the oligonucleotide. The resulting cDNA contains sequences derived from the random primer and the Pico v2 SMART Adapter used in the reverse transcription reaction. In the next step, a first round of PCR amplification (PCR1) adds full-length Illumina adapters, including barcodes. The 5' PCR Primer binds to the Pico v2 SMART Adapter sequence (light purple), while the 3' PCR Primer binds to sequence associated with the random primer (green). The ribosomal cDNA (originating from rRNA) is then cleaved by ZapR v2 in the presence of the mammalian-specific R-Probes v2. This process leaves the library fragments originating from non-rRNA molecules untouched, with priming sites available on both 5' and 3' ends for further PCR amplification. These fragments are enriched via a second round of PCR amplification (PCR2) using primers universal to all libraries. The final library contains sequences allowing clustering on any Illumina flow cell.

Back

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sensitivity and reproducibility with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Sequencing libraries were generated from 1 ng and 10 ng inputs of total RNA extracted from human lung FFPE tissue using both the Pico v1 and Pico v2 kits, and sequenced on a NextSeq 500 instrument. Panel A. Sequencing metrics for libraries generated from 1 ng or 10 ng inputs using each kit. For both input amounts, the Pico v2 kit resulted in greater library yields, a lower proportion of reads mapping to rRNA and mtRNA, and a lower duplicate rate. For the 1 ng input, sequencing data from the Pico v2 library also identified thousands more transcripts than sequencing data from the Pico v1 library, indicating a higher sensitivity for Pico v2. Panel B. Comparison of transcript expression levels across input amounts. Higher reproducibility was observed between 1 ng and 10 ng inputs for data generated with the Pico v2 kit vs. data generated using the Pico v1 kit. FPKM values are shown on a Log10 scale. Transcripts represented in only one library can be seen along the X- and Y-axes of the scatter plots.

Back

SeqAmp CB PCR buffer improves bead-pellet formation

SeqAmp CB PCR buffer improves bead-pellet formation

Improved bead-pellet formation with new SeqAmp CB PCR buffer. The PCR buffer included in the Pico v2 kit was re-formulated to allow for faster, tighter bead-pellet formation. Following magnetic separation for a fixed period, bead pellets formed in the new SeqAmp CB buffer (right) are tighter than those formed in the original PCR buffer (left). Tighter bead pellets tend to dry more evenly and are easier to resuspend than pellets that are broader and more diffuse.

634414 SMARTer® Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian 192 Rxns Inquire for Quotation

License Statement

ID Number  
425 LIMITED USE LABEL LICENSE: RESEARCH USE ONLY Notice to Purchaser: This product is the subject to a license granted to Takara Bio USA, Inc. and its Affiliates from Caribou Biosciences, Inc., and this product is transferred to the end-user purchaser (“Purchaser”) subject to a “Limited Use Label License” conveying to the Purchaser a limited, nontransferable right to use the product, solely as provided to Purchaser, together with (i) progeny or derivatives of the product generated by the Purchaser (including but not limited to cells), and (ii) biological material extracted or derived from the product or its corresponding progeny or derivatives (including but not limited to cells) (collectively, the product, and (i) and (ii) are referred to as “Material”) only to perform internal research for the sole benefit of the Purchaser. The Purchaser cannot sell or otherwise transfer Material to a third party or otherwise use the Material for any Excluded Use. “Excluded Use” means any and all: (a) commercial activity including, but not limited to, any use in manufacturing (including but not limited to cell line development for purposes of bioproduction), product testing, or quality control; (b) preclinical or clinical testing or other activity directed toward the submission of data to the U.S. Food and Drug Administration, or any other regulatory agency in any country or jurisdiction where the active agent in such studies comprises the Material; (c) use to provide a service, information, or data to a third party with the sole exception of using the Material to conduct in vitro sample preparation, i.e., selectively depleting target cDNAs from a sample either by cleaving or selectively separating such target cDNAs from the sample through the use of the Materials; (d) use for human or animal therapeutic, diagnostic, or prophylactic purposes or as a product for therapeutics, diagnostics, or prophylaxis; (e) activity in an agricultural field trial or any activity directed toward the submission of data to the U.S. Department of Agriculture or any other agriculture regulatory agency; (f) high throughput screening drug discovery purposes (i.e., the screening of more than 10,000 experiments per day) as well as scale-up production activities for commercialization; (g) modification of human germline, including editing of human embryo genomes (with the sole exception of editing human embryonic stem (ES) cell lines for research purposes) or reproductive cells; (h) self-editing; and/or (i) stimulation of biased inheritance of a particular gene or trait or set of genes or traits (“gene drive”). It is the Purchaser’s responsibility to use the Material in accordance with all applicable laws and regulations. For information on obtaining additional rights, including commercial rights, please contact licensing@cariboubio.com or Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA 94710 USA, Attn: Licensing
395
This Product is protected by one or more patents from the family consisting of: US10150985, CA2939621, People's Republic of China Patent: ZL201480077658.0, US10988796, DE602014058059.9, EP3105325, FR3105325, UK3105325, JP6416939 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.  Additional information may be found at https://www.takarabio.com/patents. 
450 This Product is sold under license from JumpCode Genomics, Inc., and is covered by one or more of the following US patents and foreign counterparts as well as pending US and foreign patent applications: 10,604,802; 11,708,606; 11,761,039; PCT/US2015/014242; CA2938669; EP 20192599.7; HK402021031164.3.
*

The SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian is used to generate strand-specific RNA-seq libraries for Illumina sequencing from 250 pg–10 ng inputs of purified total RNA. This kit incorporates Takara Bio’s proprietary SMART (Switching Mechanism at the 5’ end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. This method was developed to work with either high- or low-quality total RNA, does not require additional rRNA removal methods or kits, and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA—typically present in high abundance following cDNA synthesis from total RNA inputs—makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA. The new library design featured in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian improves sequencing performance compared to the original SMARTer Stranded Total RNA-Seq Kit - Pico Input Mammalian, particularly for NextSeq® and MiniSeq™ instruments carrying the two-channel SBS technology. This kit includes the Indexing Primer Set HT for Illumina v2; for your convenience, we also offer the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian Components (Cat. #s 634418 and 634419) without indexing primers.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of sequencing libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Structural features of final libraries generated with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. The adapters added using 5' PCR Primer HT and 3' PCR Primer HT contain sequences allowing clustering on any Illumina® flow cell (P7 shown in light blue, P5 shown in red), Illumina TruSeq® HT indexes (Index 1 [i7] sequence shown in orange, and Index 2 [i5] sequence shown in yellow), as well as the regions recognized by sequencing primers Read Primer 2 (Read 2, purple) and Read Primer 1 (Read 1, green). Read 1 generates sequences antisense to the original RNA, while Read 2 yields sequences sense to the original RNA (orientation of original RNA denoted by 5' and 3' in dark blue). The first three nucleotides of the second sequencing read (Read 2) are derived from the Pico v2 SMART Adapter (shown as Xs). These three nucleotides must be trimmed prior to mapping if performing paired-end sequencing.

Back

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing performance with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved pass-filter rates (%PF) with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Libraries generated with the Pico v1 or Pico v2 kits were pooled and run on NextSeq 500 or MiniSeq instruments, as indicated. For each graph, blue boxplots indicate the distribution of cluster densities for unfiltered (i.e., raw) reads, while the green boxplots indicate the distribution of cluster densities for reads that passed filtering. Quantities of reads passing filter (in millions) and %PF values for each sequencing run are included above each graph. The expected number of reads passing filter according to Illumina specifications was 130 million reads for runs on the NextSeq and 25 million reads for runs on the MiniSeq. Proportions of reads that aligned to PhiX sequences ranged from 0.5% to 1.15% for all sequencing runs. As indicated in the graphs, libraries generated with the Pico v2 kit achieved higher %PF values for both Illumina platforms relative to libraries generated with the Pico v1 kit, and yielded quantities of reads passing filter that greatly exceeded the Illumina specifications.

Back

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Workflow for SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Schematic of technology in the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. SMART technology is used in this ligation-free protocol to preserve strand-of-origin information. Random priming (represented as the green N6 Primer) allows the generation of cDNA from all RNA fragments in the sample, including rRNA. When the SMARTScribe Reverse Transcriptase (RT) reaches the 5' end of the RNA fragment, the enzyme’s terminal transferase activity adds a few non-templated nucleotides to the 3' end of the cDNA (shown as Xs). The carefully designed Pico v2 SMART Adapter (included in the SMART TSO Mix v2) base-pairs with the non-templated nucleotide stretch, creating an extended template to enable the RT to continue replicating to the end of the oligonucleotide. The resulting cDNA contains sequences derived from the random primer and the Pico v2 SMART Adapter used in the reverse transcription reaction. In the next step, a first round of PCR amplification (PCR1) adds full-length Illumina adapters, including barcodes. The 5' PCR Primer binds to the Pico v2 SMART Adapter sequence (light purple), while the 3' PCR Primer binds to sequence associated with the random primer (green). The ribosomal cDNA (originating from rRNA) is then cleaved by ZapR v2 in the presence of the mammalian-specific R-Probes v2. This process leaves the library fragments originating from non-rRNA molecules untouched, with priming sites available on both 5' and 3' ends for further PCR amplification. These fragments are enriched via a second round of PCR amplification (PCR2) using primers universal to all libraries. The final library contains sequences allowing clustering on any Illumina flow cell.

Back

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sequencing metrics with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

Improved sensitivity and reproducibility with the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian. Sequencing libraries were generated from 1 ng and 10 ng inputs of total RNA extracted from human lung FFPE tissue using both the Pico v1 and Pico v2 kits, and sequenced on a NextSeq 500 instrument. Panel A. Sequencing metrics for libraries generated from 1 ng or 10 ng inputs using each kit. For both input amounts, the Pico v2 kit resulted in greater library yields, a lower proportion of reads mapping to rRNA and mtRNA, and a lower duplicate rate. For the 1 ng input, sequencing data from the Pico v2 library also identified thousands more transcripts than sequencing data from the Pico v1 library, indicating a higher sensitivity for Pico v2. Panel B. Comparison of transcript expression levels across input amounts. Higher reproducibility was observed between 1 ng and 10 ng inputs for data generated with the Pico v2 kit vs. data generated using the Pico v1 kit. FPKM values are shown on a Log10 scale. Transcripts represented in only one library can be seen along the X- and Y-axes of the scatter plots.

Back

SeqAmp CB PCR buffer improves bead-pellet formation

SeqAmp CB PCR buffer improves bead-pellet formation

Improved bead-pellet formation with new SeqAmp CB PCR buffer. The PCR buffer included in the Pico v2 kit was re-formulated to allow for faster, tighter bead-pellet formation. Following magnetic separation for a fixed period, bead pellets formed in the new SeqAmp CB buffer (right) are tighter than those formed in the original PCR buffer (left). Tighter bead pellets tend to dry more evenly and are easier to resuspend than pellets that are broader and more diffuse.

Back

634414: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

634414: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian

*You must be logged in to a Purchasing Account in order to purchase these products online, since the purchase of these products may be restricted depending on your account type. Researchers at not-for-profit accounts receive a limited use license with their purchase of the product. Researchers at for-profit accounts must obtain a license prior to purchase. For details please contact licensing@takarabio.com.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us