We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Mammalian expression plasmids
  • Plasmids with selectable markers
  • Bidirectional promoter vectors
  • Bicistronic IRES vectors
  • MicroRNA expression
Home › Products › Gene function › Mammalian expression plasmids › Bicistronic IRES vectors

Gene function

  • Gene editing
    • CRISPR-Cas9
      • Long ssDNA for knockins
      • Knockin screening kit
      • Genome-wide sgRNA library system
      • Recombinant Cas9 protein
      • GMP recombinant Cas9
      • Mutation detection kits
      • In vitro transcription and screening kits
      • Cas9-sgRNA gesicle production
      • Cas9 antibodies
      • Plasmid systems
      • Lentiviral systems
      • AAV systems
      • RNA transfection
      • Genotype confirmation kit
      • Indel identification kit
    • Cre recombinase
      • AAV2-Cre recombinase
      • Cre Recombinase Gesicles
      • Cre recombinase RLPs
  • Viral transduction
    • Adeno-associated virus (AAV)
      • Vector systems
        • Helper-free expression system (CMV promoter)
        • Tet-inducible promoter
        • CRISPR/Cas9 system
        • Cre recombinase system
        • Beta-galactosidase system
        • ZsGreen1 control vector
      • qPCR titration
      • Purification kits
      • AAV concentration
      • Packaging systems and cells
        • 293T cell line
        • Extraction solutions
        • Packaging plasmid sets
    • Adenovirus
      • Vectors and packaging
        • Expression system 3
        • Tet inducible
        • Adeno-X 293 cells
      • CAR Receptor Booster
      • Purification kits
      • Titration kits
    • Lentivirus
      • Vector systems
        • Constitutive promoter
        • EF-1 alpha promoter
        • IRES bicistronic
        • Fluorescent protein
        • Tet-inducible
      • Premade lentiviral particles
        • Whole-cell labeling
        • Organelle labeling
        • Tet-On 3G transactivator
      • Packaging systems and cells
        • Lenti-X packaging single shots
        • Lenti-X 293T cells
      • Titration kits
        • Lenti-X GoStix Plus
        • qRT-PCR
        • p24 ELISA
        • Integrated copy number
      • Lentivirus concentration
      • Purification kits
      • Integration site analysis
      • Transduction sponges
        • Lenti-X Transduction Sponge
        • Lenti-X T-Cell Transduction Sponge
      • Transduction enhancers
        • Lenti-X Accelerator
        • Ecotropic Receptor Booster
    • Retrovirus
      • Vector systems
        • Constitutive promoter
        • Fluorescent protein
        • Tet inducible
        • MSCV system
      • Packaging systems and cells
      • Titration kits
      • Retro-X Concentrator
      • Integration site analysis
      • Receptor booster
  • Fluorescent proteins
    • Fluorescent protein plasmids
      • Cyan and green fluorescent proteins
        • AcGFP1 fluorescent protein
        • ZsGreen1 fluorescent protein
        • GFP & GFPuv fluorescent proteins
        • AmCyan1 fluorescent protein
      • Red fluorescent proteins
        • mCherry fluorescent protein
        • DsRed-Monomer fluorescent protein
        • DsRed2 fluorescent protein
        • DsRed-Express and DsRed-Express2 fluorescent proteins
        • tdTomato fluorescent protein
        • AsRed2 fluorescent protein
        • mStrawberry fluorescent protein
      • Far-red fluorescent proteins
        • E2-Crimson fluorescent protein
        • HcRed1 fluorescent protein
        • mRaspberry fluorescent protein
        • mPlum fluorescent protein
      • Orange and yellow fluorescent proteins
        • mOrange2 fluorescent protein
        • mBanana fluorescent protein
        • ZsYellow1 fluorescent protein
      • Photoactivatable and photoswitchable proteins
        • Dendra2 fluorescent protein
        • Timer fluorescent protein
        • PAmCherry fluorescent protein
    • Subcellular labeling plasmids
    • Flow cytometer calibration beads
    • Recombinant fluorescent proteins
  • T-cell transduction and culture
    • RetroNectin reagent
    • LymphoONE T-cell medium
    • Cytokine GoStix Plus assays
    • Anti-CD3 antibody (OKT3)
    • CultiLife culture bags
    • RetroNectin ELISA kit
  • Tet-inducible expression systems
    • Tet-One systems
    • Tet-On 3G systems
      • Tet-On 3G systems
      • Tet-On 3G—lentiviral
      • Tet-On 3G—retroviral
      • Adeno-X Tet-On 3G inducible expression system
      • Tet-On 3G cell lines
      • Tet-On 3G systems—bidirectional
      • Tet-On 3G systems—bicistronic
      • Tet-On 3G systems—EF1-alpha promoter
    • Tet systems legacy products
      • Tet-Off cell lines
      • Tet-On and Tet-Off—2nd generation
      • Tet-tTS transcriptional silencer
    • Tet-inducible miRNA systems
    • TetR monoclonal antibody
    • Tet-approved FBS
  • ProteoTuner protein control systems
    • Plasmid systems
    • Viral systems
    • ProteoTuner antibody
    • Shield1 ligand
  • iDimerize inducible protein interaction systems
    • Homodimerization systems
    • Heterodimerization systems
    • Reverse dimerization
    • Regulated transcription
    • Dimerizer ligands
    • In vivo applications
    • Dimerization domain antibodies
  • Transfection reagents
    • Plasmid transfection reagents
      • Xfect reagent
      • Xfect for mES cells
      • Calcium phosphate transfection
      • Fluorescent transfection controls
    • Protein transfection reagents
    • RNA transfection reagents
  • Mammalian expression plasmids
    • Plasmids with selectable markers
    • Bidirectional promoter vectors
    • Bicistronic IRES vectors
    • MicroRNA expression
  • Cell biology assays
    • Reporter systems
      • Fluorescent protein promoter reporters
        • Promoterless (traditional)
      • Proteasome monitoring
      • Secreted alkaline phosphatase assays
      • Beta galactosidase and LacZ vectors
      • Secreted luciferase assay
      • Fucci cell-cycle vectors
      • Lenti-X Actin Dynamics Monitoring Kit
    • Apoptosis detection kits
      • ApoAlert caspase assays
      • Apoptosis analysis
      • In situ apoptosis detection
    • Epigenetics
      • DNA methylation
        • EpiXplore Methylated DNA Enrichment Kit
        • EpiScope MSP Kit
        • EpiScope Nucleosome Preparation Kit
        • EpiTaq HS
        • EpiScope control DNA
    • Cell biology reagents
      • WST-1 cell proliferation
    • RNA interference
      • miRNA
        • MicroRNA quantitation
      • siRNA
        • siRNA quantitation
    • Cell-culture accessories
      • Magnetic separator for cell culture
      • Antibiotics for cell biology
        • Anhydrotetracycline
      • Antibiotic selection markers & plasmids
    • Signal transduction
      • Pathway profiling vectors
      • Dominant negative vectors
Need help?
Contact Sales

Bicistronic IRES vectors

Bicistronic IRES vectors

IRES-containing bicistronic vectors allow the simultaneous expression of two proteins separately, but from the same RNA transcript (Jackson et al. 1990; Jang et al. 1988). Click the "more" button for detailed information.

IRES-containing bicistronic vectors allow the simultaneous expression of two proteins separately, but from the same RNA transcript (Jackson et al. 1990; Jang et al. 1988). Click the "more" button for detailed information.

How does an IRES work?

The IRES of the encephalomyocarditis virus (EMCV) permits the translation of two open reading frames from one messenger RNA. Although translation initiation of eukaryotic mRNAs occurs almost exclusively at the 5' cap, the IRES allows ribosomes to bind and initiate translation at a second, internal location. Thus, two proteins are expressed simultaneously from the same bicistronic mRNA transcript.

Our pIRES vectors contain two multiple cloning sites flanking the central IRES for you to clone and express two genes of interest.

pIRES vectors containing antibiotic selection markers

The pIRES selection vectors pIRESpuro3, pIREShyg3, pIRESneo3, and pIRESbleo3 each contain a multiple cloning site located upstream of the IRES from which a selection marker is expressed. Because your gene of interest and a selection marker are translated from a single RNA, you can be certain that nearly 100% of the colonies that are resistant to puromycin, hygromycin, G418, or bleomycin also express your protein of interest.

All IRES selection vectors contain a partially disabled IRES which reduces the efficiency of translation initiation for the selection marker relative to that of the cloned gene, and allows preferential selection of cells expressing high levels of your protein of interest (Rees et al. 1996).

An IRES combined with a fluorescent protein

Similarly, fluorescent protein-containing IRES vectors allow coexpression of your target protein and a fluorescent protein. Successfully transfected target cells are easily identified by fluorescence microscopy or flow cytometry. The are several options for different fluorescent proteins, which include mCherry, ZsGreen1, and tdTomato (pLVX-IRES Vectors), and AcGFP1, DsRed2, and DsRed-Express (pIRES2 Vectors).

 More  Less
Cat. # Product Size Price License Quantity Details
632540 pIRES2 DsRed-Express2 Vector 20 ug Inquire for Quotation

License Statement

ID Number  
72 Living Colors Fluorescent Protein Products: Not-For-Profit Entities: Orders may be placed in the normal manner by contacting your local representative or Takara Bio USA, Inc. Customer Service. Any and all uses of this product will be subject to the terms and conditions of the Non-Commercial Use License Agreement (the “Non-Commercial License”), a copy of which can be found below. As a condition of sale of this product to you, and prior to using this product, you must agree to the terms and conditions of the Non-Commercial License. Under the Non-Commercial License, Takara Bio USA, Inc. grants Not-For-Profit Entities a non-exclusive, non-transferable, non-sublicensable and limited license to use this product for internal, non-commercial scientific research use only. Such license specifically excludes the right to sell or otherwise transfer this product, its components or derivatives thereof to third parties. No modifications to the product may be made without express written permission from Takara Bio USA, Inc. Any other use of this product requires a different license from Takara Bio USA, Inc. For license information, please contact a licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com. For-Profit Entities wishing to use this product are required to obtain a license from Takara Bio USA, Inc. For license information, please contact a licensing representative by e-mail at licensing@takarabio.com. Not-For-Profit Non-Commercial Use License: A copy of the pIRES2 DsRed-Express2 Vector product License Agreement can be found by clicking here.
69 DsRed Express2 is covered by US patent 8,679,749.
*

pIRES2 DsRed-Express 2 is a eukaryotic expression vector that encodes DsRed-Express2, a variant of Discosoma sp. red fluorescent protein contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV) between the MCS and red fluorescent protein DsRed-Express2 coding region. This permits both the gene of interest (cloned into the MCS) and the DsRed-Express2 gene to be translated from a single bicistronic mRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Map of the fluorescent pIRES2 bicistronic expression vectors

Map of the fluorescent pIRES2 bicistronic expression vectors
Map of the fluorescent pIRES2 bicistronic expression vectors.

Back

Expression of two proteins from a single mRNA transcript

Expression of two proteins from a single mRNA transcript
Expression of two proteins from a single mRNA transcript. A fluorescent protein is translated from an internal ribosome entry site (IRES).

Back

632540: pIRES2 DsRed-Express2 Vector

632540: pIRES2 DsRed-Express2 Vector
632478 plRES2-ZsGreen1 Vector 20 ug USD $615.00

pIRES2-ZsGreen1 is a bicistronic expression vector containing ZsGreen1 as a marker for transfection efficiency. It encodes a human-codon-optimized variant of the Zoanthus sp. green fluorescent protein, ZsGreen, which has been engineered for brighter fluorescence and higher expression in mammalian cells. A gene of interest is inserted into the MCS located upstream of the encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES). The IRES sequence allows the gene of interest and ZsGreen1 to be translated simultaneously from the same mRNA transcript.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Map of the fluorescent pIRES2 bicistronic expression vectors

Map of the fluorescent pIRES2 bicistronic expression vectors
Map of the fluorescent pIRES2 bicistronic expression vectors.

Back

Expression of two proteins from a single mRNA transcript

Expression of two proteins from a single mRNA transcript
Expression of two proteins from a single mRNA transcript. A fluorescent protein is translated from an internal ribosome entry site (IRES).

Back

632478: plRES2-ZsGreen1 Vector

632478: plRES2-ZsGreen1 Vector

Back

Use of AcGFP1 for fusions and fluorescence microscopy applications

Use of AcGFP1 for fusions and fluorescence microscopy applications

Use of AcGFP1 for fusions and fluorescence microscopy applications. Panels A and B. Activation of Protein Kinase C alpha was monitored with Living Colors AcGFP1. Panel A. HEK 293 cells were stably transfected with a plasmid encoding AcGFP1 fused to PKC alpha. Panel B. Cells were induced with 1.5 µg/ml PMA for 3 min. The PKC alpha-AcGFP1 fusion moves from the cytosol to the plasma membrane, a result consistent with the known mobilization pattern of PKC alpha. Panel C. HeLa cells were transiently transfected with pAcGFP1-Actin and visualized by fluorescence microscopy.

632435 pIRES2-AcGFP1 Vector 20 ug Inquire for Quotation

License Statement

ID Number  
72 Living Colors Fluorescent Protein Products: Not-For-Profit Entities: Orders may be placed in the normal manner by contacting your local representative or Takara Bio USA, Inc. Customer Service. Any and all uses of this product will be subject to the terms and conditions of the Non-Commercial Use License Agreement (the “Non-Commercial License”), a copy of which can be found below. As a condition of sale of this product to you, and prior to using this product, you must agree to the terms and conditions of the Non-Commercial License. Under the Non-Commercial License, Takara Bio USA, Inc. grants Not-For-Profit Entities a non-exclusive, non-transferable, non-sublicensable and limited license to use this product for internal, non-commercial scientific research use only. Such license specifically excludes the right to sell or otherwise transfer this product, its components or derivatives thereof to third parties. No modifications to the product may be made without express written permission from Takara Bio USA, Inc. Any other use of this product requires a different license from Takara Bio USA, Inc. For license information, please contact a licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com. For-Profit Entities wishing to use this product are required to obtain a license from Takara Bio USA, Inc. For license information, please contact a licensing representative by e-mail at licensing@takarabio.com. Not-For-Profit Non-Commercial Use License: A copy of the pIRES2-AcGFP1 Vector product License Agreement can be found by clicking here.
39 AcGFP is covered by U.S. Patent Numbers; 7,432,053, 7,667,016, 7,879,988 and 7,897,726.
*

pIRES2-AcGFP1 is a bicistronic vector designed for the simultaneous expression of a novel green fluorescent protein (AcGFP1) and a protein of interest from the same transcript in transfected mammalian cells. This vector contains an internal ribosome entry site (IRES2) of the encephalomyocarditis virus (EMCV). When a gene of interest is inserted into the MCS located upstream of the IRES, both the gene of interest and the AcGFP1 coding region will be translated from a single bicistronic mRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Map of the fluorescent pIRES2 bicistronic expression vectors

Map of the fluorescent pIRES2 bicistronic expression vectors
Map of the fluorescent pIRES2 bicistronic expression vectors.

Back

Expression of two proteins from a single mRNA transcript

Expression of two proteins from a single mRNA transcript
Expression of two proteins from a single mRNA transcript. A fluorescent protein is translated from an internal ribosome entry site (IRES).

Back

632435: pIRES2-AcGFP1 Vector

632435: pIRES2-AcGFP1 Vector

Back

Use of AcGFP1 for fusions and fluorescence microscopy applications

Use of AcGFP1 for fusions and fluorescence microscopy applications

Use of AcGFP1 for fusions and fluorescence microscopy applications. Panels A and B. Activation of Protein Kinase C alpha was monitored with Living Colors AcGFP1. Panel A. HEK 293 cells were stably transfected with a plasmid encoding AcGFP1 fused to PKC alpha. Panel B. Cells were induced with 1.5 µg/ml PMA for 3 min. The PKC alpha-AcGFP1 fusion moves from the cytosol to the plasma membrane, a result consistent with the known mobilization pattern of PKC alpha. Panel C. HeLa cells were transiently transfected with pAcGFP1-Actin and visualized by fluorescence microscopy.

Back

AcGFP1 is a monomeric protein

AcGFP1 is a monomeric protein

AcGFP1 is a monomeric protein. Panel A. Recombinant AcGFP1 protein was analyzed by FPLC gel filtration chromatography. Overall protein absorbance (A280) and chromophore excitation (A477) of the eluted material were monitored simultaneously. AcGFP1 elutes from the column at a retention time corresponding to a molecular weight of 24 kDa. The calculated molecular weight of AcGFP1 is 26.9 kDa. Panel B. Recombinant AcGFP1 protein was analyzed by sucrose density ultracentrifugation using a continuous gradient. Panel C. Pseudonative gel analysis of proteins. The oligomeric structure of proteins is preserved during SDS-PAGE analysis if samples are kept at 4°C and not boiled prior to loading on a gel. Boiled and unboiled recombinant proteins (7.5 μg) were separated by SDS-PAGE electrophoresis (12% acrylamide). In both the boiled (denatured) and unboiled (nondenatured) samples, AcGFP1 runs as a uniform band of ~30 kDa due to its monomeric structure. The unboiled (nondenatured) DsRed-Express runs at a much higher molecular weight than its denatured (boiled) counterpart due to its oligomeric structure.

632420 pIRES2-DsRed2 Vector 20 ug USD $615.00

Bicistronic expression vector containing DsRed2 as a marker for transfection efficiency. A gene of interest is inserted into the MCS located upstream of the encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES). The IRES sequence allows both the gene of interest and DsRed2 to be translated simultaneously from the same mRNA transcript. DsRed2 is a human codon-optimized variant of wild-type DsRed that has been engineered for faster maturation and lower non-specific aggregation.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

632420: pIRES2-DsRed2 Vector

632420: pIRES2-DsRed2 Vector

Back

Map of the fluorescent pIRES2 bicistronic expression vectors

Map of the fluorescent pIRES2 bicistronic expression vectors
Map of the fluorescent pIRES2 bicistronic expression vectors.

Back

Expression of two proteins from a single mRNA transcript

Expression of two proteins from a single mRNA transcript
Expression of two proteins from a single mRNA transcript. A fluorescent protein is translated from an internal ribosome entry site (IRES).
632187 pLVX-IRES-ZsGreen1 Vector 10 ug USD $705.00

The pLVX-IRES-ZsGreen1 Vector is a bicistronic lentiviral expression vector that can be used to generate high-titer lentivirus for transducing dividing or non-dividing mammalian cells. The vector contains an internal ribosomal entry site (IRES) which allows a gene-of-interest and the ZsGreen1 fluorescent protein to be simultaneously coexpressed from a single mRNA transcript. When used with Lenti-X Packaging Single Shots (e.g. Cat. No. 631275) and our Lenti-X 293T Cell Line (Cat. No. 632180), the vector generates high titers of replication-incompetent, VSV-G pseudotyped lentivirus.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents You May Also Like Image Data Resources

Back

Lentiviral vectors with fluorescent proteins

Lentiviral vectors with fluorescent proteins

Lentiviral vectors with fluorescent proteins. Lenti-X vectors contain sequence elements that facilitate lentiviral packaging and/or boost transgene expression, including the LTRs, packaging signal (Ψ), Rev response element (RRE), and central polypurine tract/central termination sequence (cPPT/CTS) from HIV-1; and the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE). Vectors can express your protein fused at its N- or C- terminus to either a green (AcGFP1) or red (DsRed-Monomer) fluorescent protein tag, or coexpress it as a separate protein along with ZsGreen1 (shown), mCherry, or tdTomato.

Required Products

Cat. # Product Size Price License Quantity Details
631275 Lenti-X™ Packaging Single Shots (VSV-G) 16 Rxns USD $1071.00

License Statement

ID Number  
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.
259 This Product is protected by one or more patents from the family consisting of: JP6454352 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.

Lenti-X Packaging Single Shots (VSV-G) provide an extremely simple and consistent one-step method for producing high-titer lentivirus. No additional transfection reagent is needed because Lenti-X Packaging Single Shots (VSV-G) consist of pre-aliquoted, lyophilized, single tubes of Xfect Transfection Reagent premixed with an optimized formulation of VSV-G pseudotyped Lenti-X lentiviral packaging plasmids. High-titer virus is produced by simply reconstituting this mixture with your lentiviral vector of choice in sterile water and adding it to 293T cells, e.g., Lenti-X 293T Cells (Cat. # 632180), in a 10 cm dish.

Documents Components You May Also Like Image Data

Back

The Lenti-X Packaging Single Shots (VSV-G) protocol

The Lenti-X Packaging Single Shots (VSV-G) protocol
The Lenti-X Packaging Single Shots (VSV-G) protocol.

Back

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers. A lentiviral vector containing the ZsGreen1 gene was packaged according to the Lenti-X single shots protocol in four independent experiments. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots; the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. 48 hours after transfection, the cells were imaged by fluorescence microscopy (Panel A, top) and light microscopy (Panel A, bottom). After images were taken, the supernatant was harvested and used infect HT1080 cells for titer determination (Panel B, IFU/ml).

Back

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots. A CMV ZsGreen1 expression cassette was cloned into several lentiviral vector backbones. These vectors were then packaged into lentivirus using the Lenti-X packaging single shots following the provided protocol. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots, and the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. After 48 hours, titer was determined using several methods. To determine infectivity, the supernatant was harvested and used to infect HT1080 cells (Flow Cytometry). Harvested viral supernatants were also analyzed by RT-PCR to quantify viral genome copies (qRT-PCR, Lenti-X qRT-PCR Titration Kit), ELISA to measure p24 (p24 ELISA, Lenti-X p24 Rapid Titer Kit), and by a rapid lentiviral detection method (Lenti-X GoStix).

Back

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems . Our Lenti-X Packaging single shots utilize a packaging system that consists of five separate components (Panel A), mixed in proprietary proportions for optimized packaging activity. The separation of the gag, pol, and env genes effectively reduces the incidence of RCL (Wu et al., 2000). High levels of expression of essential viral components are driven by the Tet-Off and Tat transactivators, which induce a cascade of expression that results in high titers of lentivirus. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant lentiviral particle. Not all vector elements are shown. Other 3rd generation lentiviral packaging systems (Panel B) generate lower titers, do not contain separate gag and pol sequences, and do not use a transactivation cascade mechanism.

Back

631275: Lenti-X Packaging Single Shots (VSV-G)

631275: Lenti-X Packaging Single Shots (VSV-G)
632180 Lenti-X™ 293T Cell Line 1 mL USD $422.00

License Statement

ID Number  
406 This product is the subject of a technology license agreement for internal research use only. Use of this product other than for research use may require additional licenses. Information on license restrictions or for uses other than research may be obtained by contacting licensing@takarabio.com.

The Lenti-X 293T Cell Line is a subclone of the transformed human embryonic kidney cell line, HEK 293, which is highly transfectable and supports high levels of viral protein expression. When transfected with Lenti-X Packaging Single Shots and a lentiviral vector, these cells are capable of producing lentiviral titers as high as >108 ifu/ml, as determined by flow cytometry. The cell line also constitutively expresses the simian virus 40 (SV40) large T antigen.

Documents Components You May Also Like Image Data Resources

Back

632180: Lenti-X 293T Cell Line

632180: Lenti-X 293T Cell Line

Back

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein
Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein. As little as 10 µl of supernatant from Lenti-X transduced the majority of these HeLa cells, whereas 10 µl of supernatant from the other system transduced only a small percentage of the cells. Transduced cells were quantified by flow cytometry.

Back

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus. Recombinant lentivirus for expressing ZsGreen1 was produced using Lenti-X virus and used to transduce normal human neural progenitor cells. A single transduced cell is shown under phase contrast microscopy (Panel A) and fluorescence microscopy (Panel B).

Back

High-titer lentivirus production

High-titer lentivirus production

High-titer lentivirus production. Lenti-X 293T cells were transduced with the indicated volumes (µl) of lentiviral packaging supernatant generated with the Lenti-X Expression System and then selected with puromycin for 9 days to allow the formation of the resistant colonies, which were then stained with crystal violet.

Back

293T cell line for higher titers

293T cell line for higher titers

293T cell line for higher titers. We used our fourth-generation lentiviral packaging system and one of our pLVX-lentiviral vectors to compare the virus production of the Lenti-X 293T Cell Line to that of two other commonly used HEK 293-based cell lines. Lenti-X 293T cells clearly outperformed the other cell lines—producing over 6X more virus than 293FT cells and up to 30X more virus than the parental HEK 293 cell line.

631987 pLVX-EF1alpha-IRES-mCherry Vector 10 ug Inquire for Quotation *

pLVX-EF1α-IRES-mCherry is a bicistronic lentiviral expression vector that can be used to generate high-titer lentivirus for transducing virtually any dividing or nondividing mammalian cell type, including primary and stem cells. The vector contains an internal ribosomal entry site (IRES) that allows a gene-of-interest and the red fluorescent protein mCherry to be simultaneously coexpressed from a single mRNA transcript. Expression of the transcript is driven by the constitutively active human elongation factor 1 alpha (EF1α) promoter.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

Lentiviral vector systems with EF-1 alpha promoters

Lentiviral vector systems with EF-1 alpha promoters
Lentiviral vector systems with EF-1 alpha promoters. Achieve robust, constitutive, long-term expression of your gene of interest in cell types in which CMV promoters are often silenced, such as hematopoietic and stem cells.

Back

631987: pLVX-EF1alpha-IRES-mCherry Vector

631987: pLVX-EF1alpha-IRES-mCherry Vector

Back

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter. The mouse embryonic stem cell lines E14 (Panel A) and D3 (Panel B) were transduced by Lenti-X lentivirus, expressing AcGFP1 either under the control of the CMV promoter or the Elongation factor alpha (EF-1 alpha) promoter. The expression level of AcGFP1 in infected cells five days postinfection was monitored by FACS analysis using the FL1 channel. The expression of AcGFP1 driven by the EF-1 alpha promoter in both stem cell lines was considerably higher compared to the CMV promoter. This is mainly due to a considerably lower rate of silencing of the EF-1 alpha promoter in stem cells compared to the CMV promoter as published (Wang, et al. (2008) Stem Cells Dev 17:279–289).

Required Products

Cat. # Product Size Price License Quantity Details
631275 Lenti-X™ Packaging Single Shots (VSV-G) 16 Rxns USD $1071.00

License Statement

ID Number  
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.
259 This Product is protected by one or more patents from the family consisting of: JP6454352 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.

Lenti-X Packaging Single Shots (VSV-G) provide an extremely simple and consistent one-step method for producing high-titer lentivirus. No additional transfection reagent is needed because Lenti-X Packaging Single Shots (VSV-G) consist of pre-aliquoted, lyophilized, single tubes of Xfect Transfection Reagent premixed with an optimized formulation of VSV-G pseudotyped Lenti-X lentiviral packaging plasmids. High-titer virus is produced by simply reconstituting this mixture with your lentiviral vector of choice in sterile water and adding it to 293T cells, e.g., Lenti-X 293T Cells (Cat. # 632180), in a 10 cm dish.

Documents Components You May Also Like Image Data

Back

The Lenti-X Packaging Single Shots (VSV-G) protocol

The Lenti-X Packaging Single Shots (VSV-G) protocol
The Lenti-X Packaging Single Shots (VSV-G) protocol.

Back

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers. A lentiviral vector containing the ZsGreen1 gene was packaged according to the Lenti-X single shots protocol in four independent experiments. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots; the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. 48 hours after transfection, the cells were imaged by fluorescence microscopy (Panel A, top) and light microscopy (Panel A, bottom). After images were taken, the supernatant was harvested and used infect HT1080 cells for titer determination (Panel B, IFU/ml).

Back

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots. A CMV ZsGreen1 expression cassette was cloned into several lentiviral vector backbones. These vectors were then packaged into lentivirus using the Lenti-X packaging single shots following the provided protocol. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots, and the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. After 48 hours, titer was determined using several methods. To determine infectivity, the supernatant was harvested and used to infect HT1080 cells (Flow Cytometry). Harvested viral supernatants were also analyzed by RT-PCR to quantify viral genome copies (qRT-PCR, Lenti-X qRT-PCR Titration Kit), ELISA to measure p24 (p24 ELISA, Lenti-X p24 Rapid Titer Kit), and by a rapid lentiviral detection method (Lenti-X GoStix).

Back

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems . Our Lenti-X Packaging single shots utilize a packaging system that consists of five separate components (Panel A), mixed in proprietary proportions for optimized packaging activity. The separation of the gag, pol, and env genes effectively reduces the incidence of RCL (Wu et al., 2000). High levels of expression of essential viral components are driven by the Tet-Off and Tat transactivators, which induce a cascade of expression that results in high titers of lentivirus. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant lentiviral particle. Not all vector elements are shown. Other 3rd generation lentiviral packaging systems (Panel B) generate lower titers, do not contain separate gag and pol sequences, and do not use a transactivation cascade mechanism.

Back

631275: Lenti-X Packaging Single Shots (VSV-G)

631275: Lenti-X Packaging Single Shots (VSV-G)
632180 Lenti-X™ 293T Cell Line 1 mL USD $422.00

License Statement

ID Number  
406 This product is the subject of a technology license agreement for internal research use only. Use of this product other than for research use may require additional licenses. Information on license restrictions or for uses other than research may be obtained by contacting licensing@takarabio.com.

The Lenti-X 293T Cell Line is a subclone of the transformed human embryonic kidney cell line, HEK 293, which is highly transfectable and supports high levels of viral protein expression. When transfected with Lenti-X Packaging Single Shots and a lentiviral vector, these cells are capable of producing lentiviral titers as high as >108 ifu/ml, as determined by flow cytometry. The cell line also constitutively expresses the simian virus 40 (SV40) large T antigen.

Documents Components You May Also Like Image Data Resources

Back

632180: Lenti-X 293T Cell Line

632180: Lenti-X 293T Cell Line

Back

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein
Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein. As little as 10 µl of supernatant from Lenti-X transduced the majority of these HeLa cells, whereas 10 µl of supernatant from the other system transduced only a small percentage of the cells. Transduced cells were quantified by flow cytometry.

Back

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus. Recombinant lentivirus for expressing ZsGreen1 was produced using Lenti-X virus and used to transduce normal human neural progenitor cells. A single transduced cell is shown under phase contrast microscopy (Panel A) and fluorescence microscopy (Panel B).

Back

High-titer lentivirus production

High-titer lentivirus production

High-titer lentivirus production. Lenti-X 293T cells were transduced with the indicated volumes (µl) of lentiviral packaging supernatant generated with the Lenti-X Expression System and then selected with puromycin for 9 days to allow the formation of the resistant colonies, which were then stained with crystal violet.

Back

293T cell line for higher titers

293T cell line for higher titers

293T cell line for higher titers. We used our fourth-generation lentiviral packaging system and one of our pLVX-lentiviral vectors to compare the virus production of the Lenti-X 293T Cell Line to that of two other commonly used HEK 293-based cell lines. Lenti-X 293T cells clearly outperformed the other cell lines—producing over 6X more virus than 293FT cells and up to 30X more virus than the parental HEK 293 cell line.

631982 pLVX-EF1alpha-IRES-ZsGreen1 Vector 10 ug USD $705.00

pLVX-EF1α-IRES-ZsGreen1 is a bicistronic lentiviral expression vector that can be used to generate high-titer lentivirus for transducing virtually any dividing or nondividing mammalian cell type, including primary and stem cells. The vector contains an internal ribosomal entry site (IRES) that allows a gene-of-interest and the ZsGreen1 fluorescent protein to be simultaneously coexpressed from a single mRNA transcript. Expression of the transcript is driven by the constitutively active human elongation factor 1 alpha (EF1α) promoter.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

631982: pLVX-EF1alpha-IRES-ZsGreen1 Vector

631982: pLVX-EF1alpha-IRES-ZsGreen1 Vector

Back

Lentiviral vector systems with EF-1 alpha promoters

Lentiviral vector systems with EF-1 alpha promoters
Lentiviral vector systems with EF-1 alpha promoters. Achieve robust, constitutive, long-term expression of your gene of interest in cell types in which CMV promoters are often silenced, such as hematopoietic and stem cells.

Back

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter. The mouse embryonic stem cell lines E14 (Panel A) and D3 (Panel B) were transduced by Lenti-X lentivirus, expressing AcGFP1 either under the control of the CMV promoter or the Elongation factor alpha (EF-1 alpha) promoter. The expression level of AcGFP1 in infected cells five days postinfection was monitored by FACS analysis using the FL1 channel. The expression of AcGFP1 driven by the EF-1 alpha promoter in both stem cell lines was considerably higher compared to the CMV promoter. This is mainly due to a considerably lower rate of silencing of the EF-1 alpha promoter in stem cells compared to the CMV promoter as published (Wang, et al. (2008) Stem Cells Dev 17:279–289).

Required Products

Cat. # Product Size Price License Quantity Details
631275 Lenti-X™ Packaging Single Shots (VSV-G) 16 Rxns USD $1071.00

License Statement

ID Number  
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.
259 This Product is protected by one or more patents from the family consisting of: JP6454352 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.

Lenti-X Packaging Single Shots (VSV-G) provide an extremely simple and consistent one-step method for producing high-titer lentivirus. No additional transfection reagent is needed because Lenti-X Packaging Single Shots (VSV-G) consist of pre-aliquoted, lyophilized, single tubes of Xfect Transfection Reagent premixed with an optimized formulation of VSV-G pseudotyped Lenti-X lentiviral packaging plasmids. High-titer virus is produced by simply reconstituting this mixture with your lentiviral vector of choice in sterile water and adding it to 293T cells, e.g., Lenti-X 293T Cells (Cat. # 632180), in a 10 cm dish.

Documents Components You May Also Like Image Data

Back

The Lenti-X Packaging Single Shots (VSV-G) protocol

The Lenti-X Packaging Single Shots (VSV-G) protocol
The Lenti-X Packaging Single Shots (VSV-G) protocol.

Back

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers. A lentiviral vector containing the ZsGreen1 gene was packaged according to the Lenti-X single shots protocol in four independent experiments. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots; the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. 48 hours after transfection, the cells were imaged by fluorescence microscopy (Panel A, top) and light microscopy (Panel A, bottom). After images were taken, the supernatant was harvested and used infect HT1080 cells for titer determination (Panel B, IFU/ml).

Back

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots. A CMV ZsGreen1 expression cassette was cloned into several lentiviral vector backbones. These vectors were then packaged into lentivirus using the Lenti-X packaging single shots following the provided protocol. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots, and the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. After 48 hours, titer was determined using several methods. To determine infectivity, the supernatant was harvested and used to infect HT1080 cells (Flow Cytometry). Harvested viral supernatants were also analyzed by RT-PCR to quantify viral genome copies (qRT-PCR, Lenti-X qRT-PCR Titration Kit), ELISA to measure p24 (p24 ELISA, Lenti-X p24 Rapid Titer Kit), and by a rapid lentiviral detection method (Lenti-X GoStix).

Back

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems . Our Lenti-X Packaging single shots utilize a packaging system that consists of five separate components (Panel A), mixed in proprietary proportions for optimized packaging activity. The separation of the gag, pol, and env genes effectively reduces the incidence of RCL (Wu et al., 2000). High levels of expression of essential viral components are driven by the Tet-Off and Tat transactivators, which induce a cascade of expression that results in high titers of lentivirus. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant lentiviral particle. Not all vector elements are shown. Other 3rd generation lentiviral packaging systems (Panel B) generate lower titers, do not contain separate gag and pol sequences, and do not use a transactivation cascade mechanism.

Back

631275: Lenti-X Packaging Single Shots (VSV-G)

631275: Lenti-X Packaging Single Shots (VSV-G)
632180 Lenti-X™ 293T Cell Line 1 mL USD $422.00

License Statement

ID Number  
406 This product is the subject of a technology license agreement for internal research use only. Use of this product other than for research use may require additional licenses. Information on license restrictions or for uses other than research may be obtained by contacting licensing@takarabio.com.

The Lenti-X 293T Cell Line is a subclone of the transformed human embryonic kidney cell line, HEK 293, which is highly transfectable and supports high levels of viral protein expression. When transfected with Lenti-X Packaging Single Shots and a lentiviral vector, these cells are capable of producing lentiviral titers as high as >108 ifu/ml, as determined by flow cytometry. The cell line also constitutively expresses the simian virus 40 (SV40) large T antigen.

Documents Components You May Also Like Image Data Resources

Back

632180: Lenti-X 293T Cell Line

632180: Lenti-X 293T Cell Line

Back

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein
Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein. As little as 10 µl of supernatant from Lenti-X transduced the majority of these HeLa cells, whereas 10 µl of supernatant from the other system transduced only a small percentage of the cells. Transduced cells were quantified by flow cytometry.

Back

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus. Recombinant lentivirus for expressing ZsGreen1 was produced using Lenti-X virus and used to transduce normal human neural progenitor cells. A single transduced cell is shown under phase contrast microscopy (Panel A) and fluorescence microscopy (Panel B).

Back

High-titer lentivirus production

High-titer lentivirus production

High-titer lentivirus production. Lenti-X 293T cells were transduced with the indicated volumes (µl) of lentiviral packaging supernatant generated with the Lenti-X Expression System and then selected with puromycin for 9 days to allow the formation of the resistant colonies, which were then stained with crystal violet.

Back

293T cell line for higher titers

293T cell line for higher titers

293T cell line for higher titers. We used our fourth-generation lentiviral packaging system and one of our pLVX-lentiviral vectors to compare the virus production of the Lenti-X 293T Cell Line to that of two other commonly used HEK 293-based cell lines. Lenti-X 293T cells clearly outperformed the other cell lines—producing over 6X more virus than 293FT cells and up to 30X more virus than the parental HEK 293 cell line.

631971 pEF1alpha-IRES-AcGFP1 Vector 10 ug Inquire for Quotation

License Statement

ID Number  
39 AcGFP is covered by U.S. Patent Numbers; 7,432,053, 7,667,016, 7,879,988 and 7,897,726.
72 Living Colors Fluorescent Protein Products: Not-For-Profit Entities: Orders may be placed in the normal manner by contacting your local representative or Takara Bio USA, Inc. Customer Service. Any and all uses of this product will be subject to the terms and conditions of the Non-Commercial Use License Agreement (the “Non-Commercial License”), a copy of which can be found below. As a condition of sale of this product to you, and prior to using this product, you must agree to the terms and conditions of the Non-Commercial License. Under the Non-Commercial License, Takara Bio USA, Inc. grants Not-For-Profit Entities a non-exclusive, non-transferable, non-sublicensable and limited license to use this product for internal, non-commercial scientific research use only. Such license specifically excludes the right to sell or otherwise transfer this product, its components or derivatives thereof to third parties. No modifications to the product may be made without express written permission from Takara Bio USA, Inc. Any other use of this product requires a different license from Takara Bio USA, Inc. For license information, please contact a licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com. For-Profit Entities wishing to use this product are required to obtain a license from Takara Bio USA, Inc. For license information, please contact a licensing representative by e-mail at licensing@takarabio.com. Not-For-Profit Non-Commercial Use License: A copy of the pEF1alpha-IRES-AcGFP1 Vector product License Agreement can be found by clicking here.
*

pEF1α-IRES-AcGFP1 is a bicistronic mammalian expression vector that allows the simultaneous, constitutive expression of a protein of interest and the green fluorescent protein AcGFP1. Expression of the bicistronic transcript is driven by the human elongation factor 1 alpha (EF1α) promoter.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

631971: pEF1alpha-IRES-AcGFP1 Vector

631971: pEF1alpha-IRES-AcGFP1 Vector

Back

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter. IRES: internal ribosome entry sequence; FP1: fluorescent protein (AcGFP1, DsRed-Monomer, or mCherry); FP2: fluorescent protein (mCherry or ZsGreen1); MCS: multiple cloning site.

Back

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter. The mouse embryonic stem cell lines E14 (Panel A) and D3 (Panel B) were transduced by Lenti-X lentivirus, expressing AcGFP1 either under the control of the CMV promoter or the Elongation factor alpha (EF-1 alpha) promoter. The expression level of AcGFP1 in infected cells five days postinfection was monitored by FACS analysis using the FL1 channel. The expression of AcGFP1 driven by the EF-1 alpha promoter in both stem cell lines was considerably higher compared to the CMV promoter. This is mainly due to a considerably lower rate of silencing of the EF-1 alpha promoter in stem cells compared to the CMV promoter as published (Wang, et al. (2008) Stem Cells Dev 17:279–289).

631970 pEF1alpha-IRES Vector 10 ug USD $579.00

pEF1α-IRES is a bicistronic mammalian expression vector that allows simultaneous, constitutive expression of two genes of interest from the same mRNA transcript, even after stable integration of the vector into the host cell genome. Stable, constitutive expression of the bicistronic transcript is driven by the human elongation factor 1 alpha (EF1α) promoter, allowing the investigation of a variety of cellular processes (such as differentiation in primary or stem cells) without the transgene silencing associated with CMV promoters.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

631970: pEF1alpha-IRES Vector

631970: pEF1alpha-IRES Vector

Back

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter. IRES: internal ribosome entry sequence; FP1: fluorescent protein (AcGFP1, DsRed-Monomer, or mCherry); FP2: fluorescent protein (mCherry or ZsGreen1); MCS: multiple cloning site.

Back

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter. The mouse embryonic stem cell lines E14 (Panel A) and D3 (Panel B) were transduced by Lenti-X lentivirus, expressing AcGFP1 either under the control of the CMV promoter or the Elongation factor alpha (EF-1 alpha) promoter. The expression level of AcGFP1 in infected cells five days postinfection was monitored by FACS analysis using the FL1 channel. The expression of AcGFP1 driven by the EF-1 alpha promoter in both stem cell lines was considerably higher compared to the CMV promoter. This is mainly due to a considerably lower rate of silencing of the EF-1 alpha promoter in stem cells compared to the CMV promoter as published (Wang, et al. (2008) Stem Cells Dev 17:279–289).

631622 pIRESbleo3 Vector 20 ug USD $446.00

The pIRESbleo3 Vector is designed for the efficient production of stable cell lines expressing recombinant proteins in mammalian cells. This vector contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV) which permits both the gene of interest and the bleomycin selection marker to be translated from a single mRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors. IRES bicistronic expression vectors permit your gene of interest and a selection marker to be translated from a single mRNA. Nearly 100% of the cells that survive selection also express your protein of interest.

Back

631622: pIRESbleo3 Vector

631622: pIRESbleo3 Vector
631621 pIRESneo3 Vector 20 ug USD $446.00

pIRESneo3 Vector is designed for the efficient production of stable cell lines expressing recombinant proteins in mammalian cells. This vector contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV), which permits both the gene of interest and the neomycin selection marker to be translated from a single mRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

631621: pIRESneo3 Vector

631621: pIRESneo3 Vector

Back

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors. IRES bicistronic expression vectors permit your gene of interest and a selection marker to be translated from a single mRNA. Nearly 100% of the cells that survive selection also express your protein of interest.

631620 pIREShyg3 Vector 20 ug USD $446.00

pIREShyg3 Vector is designed for the efficient production of stable cell lines expressing recombinant proteins in mammalian cells. This vector contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV), which permits both the gene of interest and the hygromycin B selection marker to be translated from a single mRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

631620: pIREShyg3 Vector

631620: pIREShyg3 Vector

Back

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors. IRES bicistronic expression vectors permit your gene of interest and a selection marker to be translated from a single mRNA. Nearly 100% of the cells that survive selection also express your protein of interest.

Required Products

Cat. # Product Size Price License Quantity Details
631317 Xfect™ Transfection Reagent 100 Rxns USD $310.00

License Statement

ID Number  
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.

Xfect is a transfection reagent that creates biodegradable nanoparticles that permit superior transfection efficiency of plasmid DNA into mammalian cells. Transfections can be carried out entirely in the presence of serum.

Documents Components You May Also Like Image Data

Back

High-efficiency transfection of seven of the most commonly used cell lines with Xfect Transfection Reagent

High-efficiency transfection of seven of the most commonly used cell lines with Xfect Transfection Reagent
High-efficiency transfection of seven of the most commonly used cell lines with Xfect Transfection Reagent.

Back

Transfection of Jurkat cells

Transfection of Jurkat cells

Transfection of Jurkat cells. Suspension cells such as Jurkat cells are notoriously very hard to transfect, but using the Xfect Transfection Reagent, you can achieve almost 30% efficiency. The transfection efficiency using the leading competitor product, on the other hand, is no higher than background.

Back

Xfect transfection reagent yields higher numbers of transfected, viable cells than a popular competitor reagent

Xfect transfection reagent yields higher numbers of transfected, viable cells than a popular competitor reagent

Xfect transfection reagent yields higher numbers of transfected, viable cells than a popular competitor reagent. The Xfect Reagent and Product L were each used according to their respective protocols to transfect HeLa cells with increasing amounts of plasmid DNA encoding the Living Colors fluorescent protein, AcGFP1. 48 hr posttransfection, AcGFP1 expression was assessed by flow cytometry in order to determine transfection efficiency and cell viability was assessed by trypan dye exclusion assay.

Back

Customer testimonial: transfection of primary rat cardiomyocytes with Xfect Transfection Reagent

Customer testimonial: transfection of primary rat cardiomyocytes with Xfect Transfection Reagent
Customer testimonial: transfection of primary rat cardiomyocytes with Xfect Transfection Reagent.

Back

Share without contaminating

Share without contaminating

Share without contaminating. Xfect Transfection Reagent is packaged in convenient, separable kits, so if you purchase the 100 reaction kit (2 x 50 rxns) or 300 reaction kit (3 x 100 rxns) you can share with your less-than-careful colleagues without fear.

Back

The simple Xfect Transfection Reagent protocol is completely serum-compatible

The simple Xfect Transfection Reagent protocol is completely serum-compatible
The simple Xfect Transfection Reagent protocol is completely serum-compatible.

Back

Our customers have indicated via survey that they have successfully used Xfect Transfection Reagent to transfect the cell lines listed here

Our customers have indicated via survey that they have successfully used Xfect Transfection Reagent to transfect the cell lines listed here
Our customers have indicated via survey that they have successfully used Xfect Transfection Reagent to transfect the cell lines listed here.

Back

631317: Xfect Transfection Reagent

631317: Xfect Transfection Reagent
740490.250 NucleoSpin® Plasmid Transfection-grade 250 Preps USD $440.00

NucleoSpin Plasmid Transfection-grade is a fast miniprep kit that uses a new technology developed by Macherey-Nagel to reduce the level of endotoxins co-purified during plasmid preparations from bacterial lysates. Since endotoxins interfere with eukaryotic cell survival, endotoxin reduction is essential prior to cell transfection.

Documents Image Data

Back

740490.250: NucleoSpin Plasmid Transfection-grade

740490.250: NucleoSpin Plasmid Transfection-grade

Back

Different plasmid purification technologies yield endotoxin levels appropriate for individual applications

Different plasmid purification technologies yield endotoxin levels appropriate for individual applications
Different plasmid purification technologies yield endotoxin levels appropriate for individual applications. A quantitative chromogenic Limulus Amebocyte Lysate (LAL) test was used to assess endotoxin content. As indicated, endotoxin content depends strongly on the plasmid purification technology used. The NucleoSpin Plasmid Transfection-grade kit yields a plasmid solution containing sufficiently low endotoxin levels for direct transfection into common cell lines.

.

Back

Compatibility of eluted DNA with transfection host cells

Compatibility of eluted DNA with transfection host cells
Compatibility of eluted DNA with transfection host cells. A pCMV-GFP plasmid (kindly provided by PlasmidFactory GmbH und Co. KG, Bielefeld, Germany) was purified from E. coli using the NucleoSpin Plasmid Transfection-grade kit. The purified plasmids were transfected into HEK239 cells by lipofection (Lipofectamine 2000) or nucleofection (Lonza), with a >90% transfection ratio in both cases. Survival rates of cells transfected with the eluted DNA were compared to controls containing no added DNA. The similar ratios observed indicated that cell survival is not affected by addition of DNA eluates purified with the NucleoSpin Plasmid Transfection-grade kit.

.

Back

The NucleoSpin Plasmid Transfection-grade procedure

The NucleoSpin Plasmid Transfection-grade procedure
The NucleoSpin Plasmid Transfection-grade procedure.
631619 pIRESpuro3 Vector 20 ug USD $446.00

pIRESpuro3 Vector is designed for the efficient production of stable cell lines expressing recombinant proteins in mammalian cells. This vector contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV), which permits both the gene of interest and the puromycin selection marker to be translated from a single mRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

631619: pIRESpuro3 Vector

631619: pIRESpuro3 Vector

Back

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors

Vector maps for IRES selection vectors. IRES bicistronic expression vectors permit your gene of interest and a selection marker to be translated from a single mRNA. Nearly 100% of the cells that survive selection also express your protein of interest.

631605 pIRES Vector 20 ug USD $446.00

Bicistronic expression vector for the simultaneous translation of two genes of interest from the same mRNA transcript. Each gene should be inserted into one of two MCSs located on either side of the EMCV internal ribosomal entry site (IRES). The entire cassette is driven by the CMV promoter. The vector also contains the neomycin antibiotic resistance gene for selection with G418 in mammalian cells.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

pIRES vector map

pIRES vector map
pIRES vector map. This vector enables two genes of interest to be expressed simultaneously from either side of an internal ribosome entry site (IRES).

Back

631605: pIRES Vector

631605: pIRES Vector
631238 pLVX-IRES-tdTomato Vector 20 ug USD $705.00

The pLVX-IRES-tdTomato Vector is a bicistronic lentiviral expression vector that can be used to generate high-titer lentivirus for transducing dividing or nondividing mammalian cells. The vector contains an internal ribosomal entry site (IRES) which allows a gene-of-interest and the tdTomato fluorescent protein to be simultaneously coexpressed from a single mRNA transcript. When used with the Lenti-X Packaging Single Shots and the Lenti-X 293T Cell Line (Cat. No. 632180), the vector generates high titers of replication-incompetent, VSV-G-pseudotyped lentivirus.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

tdTomato, but not GFP, can be detected in the SCID mouse cadaver phantom model

tdTomato, but not GFP, can be detected in the SCID mouse cadaver phantom model

tdTomato, but not GFP, can be detected in the SCID mouse cadaver phantom model. False-color overlay images (regions of interest encircled) indicate that the imaging system could detect tdTomato fluorescence in the cadaver model, but not GFP fluorescence. Panel A. Implanted tube with 100 x 106 MDA-MB-231-tdTomato-expressing cells, imaged with the DsRed filter set. Exposure time: 1 sec. Panel B. Implanted tube with 100 x 106 MDA-MB-231-GFP-expressing cells, imaged with the GFP filter set. Exposure time: 1 sec.

Back

631238: pLVX-IRES-tdTomato Vector

631238: pLVX-IRES-tdTomato Vector

Back

Lentiviral vectors with fluorescent proteins

Lentiviral vectors with fluorescent proteins

Lentiviral vectors with fluorescent proteins. Lenti-X vectors contain sequence elements that facilitate lentiviral packaging and/or boost transgene expression, including the LTRs, packaging signal (Ψ), Rev response element (RRE), and central polypurine tract/central termination sequence (cPPT/CTS) from HIV-1; and the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE). Vectors can express your protein fused at its N- or C- terminus to either a green (AcGFP1) or red (DsRed-Monomer) fluorescent protein tag, or coexpress it as a separate protein along with ZsGreen1 (shown), mCherry, or tdTomato.

Required Products

Cat. # Product Size Price License Quantity Details
631275 Lenti-X™ Packaging Single Shots (VSV-G) 16 Rxns USD $1071.00

License Statement

ID Number  
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.
259 This Product is protected by one or more patents from the family consisting of: JP6454352 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.

Lenti-X Packaging Single Shots (VSV-G) provide an extremely simple and consistent one-step method for producing high-titer lentivirus. No additional transfection reagent is needed because Lenti-X Packaging Single Shots (VSV-G) consist of pre-aliquoted, lyophilized, single tubes of Xfect Transfection Reagent premixed with an optimized formulation of VSV-G pseudotyped Lenti-X lentiviral packaging plasmids. High-titer virus is produced by simply reconstituting this mixture with your lentiviral vector of choice in sterile water and adding it to 293T cells, e.g., Lenti-X 293T Cells (Cat. # 632180), in a 10 cm dish.

Documents Components You May Also Like Image Data

Back

The Lenti-X Packaging Single Shots (VSV-G) protocol

The Lenti-X Packaging Single Shots (VSV-G) protocol
The Lenti-X Packaging Single Shots (VSV-G) protocol.

Back

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers. A lentiviral vector containing the ZsGreen1 gene was packaged according to the Lenti-X single shots protocol in four independent experiments. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots; the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. 48 hours after transfection, the cells were imaged by fluorescence microscopy (Panel A, top) and light microscopy (Panel A, bottom). After images were taken, the supernatant was harvested and used infect HT1080 cells for titer determination (Panel B, IFU/ml).

Back

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots. A CMV ZsGreen1 expression cassette was cloned into several lentiviral vector backbones. These vectors were then packaged into lentivirus using the Lenti-X packaging single shots following the provided protocol. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots, and the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. After 48 hours, titer was determined using several methods. To determine infectivity, the supernatant was harvested and used to infect HT1080 cells (Flow Cytometry). Harvested viral supernatants were also analyzed by RT-PCR to quantify viral genome copies (qRT-PCR, Lenti-X qRT-PCR Titration Kit), ELISA to measure p24 (p24 ELISA, Lenti-X p24 Rapid Titer Kit), and by a rapid lentiviral detection method (Lenti-X GoStix).

Back

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems . Our Lenti-X Packaging single shots utilize a packaging system that consists of five separate components (Panel A), mixed in proprietary proportions for optimized packaging activity. The separation of the gag, pol, and env genes effectively reduces the incidence of RCL (Wu et al., 2000). High levels of expression of essential viral components are driven by the Tet-Off and Tat transactivators, which induce a cascade of expression that results in high titers of lentivirus. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant lentiviral particle. Not all vector elements are shown. Other 3rd generation lentiviral packaging systems (Panel B) generate lower titers, do not contain separate gag and pol sequences, and do not use a transactivation cascade mechanism.

Back

631275: Lenti-X Packaging Single Shots (VSV-G)

631275: Lenti-X Packaging Single Shots (VSV-G)
632180 Lenti-X™ 293T Cell Line 1 mL USD $422.00

License Statement

ID Number  
406 This product is the subject of a technology license agreement for internal research use only. Use of this product other than for research use may require additional licenses. Information on license restrictions or for uses other than research may be obtained by contacting licensing@takarabio.com.

The Lenti-X 293T Cell Line is a subclone of the transformed human embryonic kidney cell line, HEK 293, which is highly transfectable and supports high levels of viral protein expression. When transfected with Lenti-X Packaging Single Shots and a lentiviral vector, these cells are capable of producing lentiviral titers as high as >108 ifu/ml, as determined by flow cytometry. The cell line also constitutively expresses the simian virus 40 (SV40) large T antigen.

Documents Components You May Also Like Image Data Resources

Back

632180: Lenti-X 293T Cell Line

632180: Lenti-X 293T Cell Line

Back

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein
Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein. As little as 10 µl of supernatant from Lenti-X transduced the majority of these HeLa cells, whereas 10 µl of supernatant from the other system transduced only a small percentage of the cells. Transduced cells were quantified by flow cytometry.

Back

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus. Recombinant lentivirus for expressing ZsGreen1 was produced using Lenti-X virus and used to transduce normal human neural progenitor cells. A single transduced cell is shown under phase contrast microscopy (Panel A) and fluorescence microscopy (Panel B).

Back

High-titer lentivirus production

High-titer lentivirus production

High-titer lentivirus production. Lenti-X 293T cells were transduced with the indicated volumes (µl) of lentiviral packaging supernatant generated with the Lenti-X Expression System and then selected with puromycin for 9 days to allow the formation of the resistant colonies, which were then stained with crystal violet.

Back

293T cell line for higher titers

293T cell line for higher titers

293T cell line for higher titers. We used our fourth-generation lentiviral packaging system and one of our pLVX-lentiviral vectors to compare the virus production of the Lenti-X 293T Cell Line to that of two other commonly used HEK 293-based cell lines. Lenti-X 293T cells clearly outperformed the other cell lines—producing over 6X more virus than 293FT cells and up to 30X more virus than the parental HEK 293 cell line.

631237 pLVX-IRES-mCherry Vector 20 ug Inquire for Quotation *

The pLVX-IRES-mCherry Vector is a bicistronic lentiviral expression vector that can be used to generate high-titer lentivirus for transducing dividing or nondividing mammalian cells. The vector contains an internal ribosomal entry site (IRES) which allows a gene-of-interest and the mCherry fluorescent protein to be simultaneously coexpressed from a single mRNA transcript. When used with Lenti-X Packaging Single Shots and the Lenti-X 293T Cell Line (Cat. No. 632180), the vector generates high titers of replication-incompetent, VSV-G-pseudotyped lentivirus.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

631237: pLVX-IRES-mCherry Vector

631237: pLVX-IRES-mCherry Vector

Back

Lentiviral vectors with fluorescent proteins

Lentiviral vectors with fluorescent proteins

Lentiviral vectors with fluorescent proteins. Lenti-X vectors contain sequence elements that facilitate lentiviral packaging and/or boost transgene expression, including the LTRs, packaging signal (Ψ), Rev response element (RRE), and central polypurine tract/central termination sequence (cPPT/CTS) from HIV-1; and the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE). Vectors can express your protein fused at its N- or C- terminus to either a green (AcGFP1) or red (DsRed-Monomer) fluorescent protein tag, or coexpress it as a separate protein along with ZsGreen1 (shown), mCherry, or tdTomato.

Required Products

Cat. # Product Size Price License Quantity Details
631275 Lenti-X™ Packaging Single Shots (VSV-G) 16 Rxns USD $1071.00

License Statement

ID Number  
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.
259 This Product is protected by one or more patents from the family consisting of: JP6454352 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.

Lenti-X Packaging Single Shots (VSV-G) provide an extremely simple and consistent one-step method for producing high-titer lentivirus. No additional transfection reagent is needed because Lenti-X Packaging Single Shots (VSV-G) consist of pre-aliquoted, lyophilized, single tubes of Xfect Transfection Reagent premixed with an optimized formulation of VSV-G pseudotyped Lenti-X lentiviral packaging plasmids. High-titer virus is produced by simply reconstituting this mixture with your lentiviral vector of choice in sterile water and adding it to 293T cells, e.g., Lenti-X 293T Cells (Cat. # 632180), in a 10 cm dish.

Documents Components You May Also Like Image Data

Back

The Lenti-X Packaging Single Shots (VSV-G) protocol

The Lenti-X Packaging Single Shots (VSV-G) protocol
The Lenti-X Packaging Single Shots (VSV-G) protocol.

Back

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers. A lentiviral vector containing the ZsGreen1 gene was packaged according to the Lenti-X single shots protocol in four independent experiments. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots; the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. 48 hours after transfection, the cells were imaged by fluorescence microscopy (Panel A, top) and light microscopy (Panel A, bottom). After images were taken, the supernatant was harvested and used infect HT1080 cells for titer determination (Panel B, IFU/ml).

Back

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots. A CMV ZsGreen1 expression cassette was cloned into several lentiviral vector backbones. These vectors were then packaged into lentivirus using the Lenti-X packaging single shots following the provided protocol. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots, and the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. After 48 hours, titer was determined using several methods. To determine infectivity, the supernatant was harvested and used to infect HT1080 cells (Flow Cytometry). Harvested viral supernatants were also analyzed by RT-PCR to quantify viral genome copies (qRT-PCR, Lenti-X qRT-PCR Titration Kit), ELISA to measure p24 (p24 ELISA, Lenti-X p24 Rapid Titer Kit), and by a rapid lentiviral detection method (Lenti-X GoStix).

Back

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems . Our Lenti-X Packaging single shots utilize a packaging system that consists of five separate components (Panel A), mixed in proprietary proportions for optimized packaging activity. The separation of the gag, pol, and env genes effectively reduces the incidence of RCL (Wu et al., 2000). High levels of expression of essential viral components are driven by the Tet-Off and Tat transactivators, which induce a cascade of expression that results in high titers of lentivirus. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant lentiviral particle. Not all vector elements are shown. Other 3rd generation lentiviral packaging systems (Panel B) generate lower titers, do not contain separate gag and pol sequences, and do not use a transactivation cascade mechanism.

Back

631275: Lenti-X Packaging Single Shots (VSV-G)

631275: Lenti-X Packaging Single Shots (VSV-G)
631232 Lenti-X™ Concentrator 500 mL USD $969.00

The Lenti-X Concentrator is a complete reagent for the concentration of infectious lentiviral vector particles. This reagent provides a scalable alternative to ultracentrifugation for viral particle concentration. Vector supernatants can be concentrated 10–100 fold, depending upon the volumes used.

Documents Components Image Data

Back

Rapid lentivirus concentration

Rapid lentivirus concentration
Rapid lentivirus concentration. Add Lenti-X Concentrator reagent to clarified viral supernatant, incubate for 30 min to overnight at 4°C, and spin. That’s it.

Back

Lentiviral concentration with high yield

Lentiviral concentration with high yield
Lentiviral concentration with high yield. Lentiviral supernatant from a pLVX-ZsGreen1 vector was concentrated from 3 ml down to 30 µl using the Lenti-X Concentrator Reagent. The titer before and after concentration were measured and confirmed that >90% of the lentivirus remained functional. Samples were titrated on HT1080 cells and analyzed by flow cytometry 48 hr post-transduction.

Back

Concentrate lentivirus from any volume or from any lentiviral titer

Concentrate lentivirus from any volume or from any lentiviral titer

Concentrate lentivirus from any volume or from any lentiviral titer. Lentiviral supernatant was diluted into 250 ml and then concentrated down to 2.5 ml using Lenti-X Concentrator (Panel A). 10-fold serial dilutions of a high-titer lentiviral supernatant (high, medium, and low) were concentrated from a volume of 10 ml down to 100 µl using the Lenti-X Concentrator Reagent (Panel B). Titrations were performed using HT1080 cells and flow cytometry 48 hr post-transduction.

Back

631232: Lenti-X Concentrator

631232: Lenti-X Concentrator
631976 pEF1alpha-IRES-ZsGreen1 Vector 10 ug USD $579.00

pEF1α-IRES-ZsGreen1 is a bicistronic mammalian expression vector that allows the simultaneous, constitutive expression of a protein of interest and the green fluorescent protein ZsGreen1. Constitutive expression of the bicistronic transcript is driven by the human elongation factor 1 alpha (EF1α) promoter.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents You May Also Like Image Data

Back

631976: pEF1alpha-IRES-ZsGreen1 Vector

631976: pEF1alpha-IRES-ZsGreen1 Vector

Back

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter

Map schematic of the plasmid choices that are available carrying the EF1-alpha promoter. IRES: internal ribosome entry sequence; FP1: fluorescent protein (AcGFP1, DsRed-Monomer, or mCherry); FP2: fluorescent protein (mCherry or ZsGreen1); MCS: multiple cloning site.

Back

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter. The mouse embryonic stem cell lines E14 (Panel A) and D3 (Panel B) were transduced by Lenti-X lentivirus, expressing AcGFP1 either under the control of the CMV promoter or the Elongation factor alpha (EF-1 alpha) promoter. The expression level of AcGFP1 in infected cells five days postinfection was monitored by FACS analysis using the FL1 channel. The expression of AcGFP1 driven by the EF-1 alpha promoter in both stem cell lines was considerably higher compared to the CMV promoter. This is mainly due to a considerably lower rate of silencing of the EF-1 alpha promoter in stem cells compared to the CMV promoter as published (Wang, et al. (2008) Stem Cells Dev 17:279–289).

631980 pEF1alpha-IRES-DsRed-Express2 Vector 10 ug Inquire for Quotation

License Statement

ID Number  
69 DsRed Express2 is covered by US patent 8,679,749.
72 Living Colors Fluorescent Protein Products: Not-For-Profit Entities: Orders may be placed in the normal manner by contacting your local representative or Takara Bio USA, Inc. Customer Service. Any and all uses of this product will be subject to the terms and conditions of the Non-Commercial Use License Agreement (the “Non-Commercial License”), a copy of which can be found below. As a condition of sale of this product to you, and prior to using this product, you must agree to the terms and conditions of the Non-Commercial License. Under the Non-Commercial License, Takara Bio USA, Inc. grants Not-For-Profit Entities a non-exclusive, non-transferable, non-sublicensable and limited license to use this product for internal, non-commercial scientific research use only. Such license specifically excludes the right to sell or otherwise transfer this product, its components or derivatives thereof to third parties. No modifications to the product may be made without express written permission from Takara Bio USA, Inc. Any other use of this product requires a different license from Takara Bio USA, Inc. For license information, please contact a licensing representative by phone at 650.919.7320 or by e-mail at licensing@takarabio.com. For-Profit Entities wishing to use this product are required to obtain a license from Takara Bio USA, Inc. For license information, please contact a licensing representative by e-mail at licensing@takarabio.com. Not-For-Profit Non-Commercial Use License: A copy of the pEF1alpha-IRES-DsRed-Express2 Vector product License Agreement can be found by clicking here.
*

pEF1α-IRES-DsRed-Express2 is a bicistronic mammalian expression vector that allows the simultaneous, constitutive expression of a protein of interest and the red fluorescent protein DsRed-Express2. Expression of the bicistronic transcript is driven by the human elongation factor 1 alpha (EF1α) promoter.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Robust expression of DsRed-Express2 in mouse bone marrow hematopoietic stem and progenitor cells

Robust expression of DsRed-Express2 in mouse bone marrow hematopoietic stem and progenitor cells

Robust expression of DsRed-Express and DsRed-Express2 in mouse bone marrow hematopoietic stem and progenitor cells. Mononuclear bone marrow cells were transduced with retroviral vectors encoding DsRed-Express (Panel A), DsRed-Express2 (Panel B), or EGFP (Panel C), and fluorescent cells were sorted 87 hr later. Red and green fluorescence signals were detected using the PE and FITC filter sets, respectively. The lines represent gates defined by analyzing untransduced cells.

Back

631980: pEF1alpha-IRES-DsRed-Express2 Vector

631980: pEF1alpha-IRES-DsRed-Express2 Vector

Back

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter

Expression of AcGFP1 driven by the EF-1 alpha promoter in stem cell lines is higher than expression driven by the CMV promoter. The mouse embryonic stem cell lines E14 (Panel A) and D3 (Panel B) were transduced by Lenti-X lentivirus, expressing AcGFP1 either under the control of the CMV promoter or the Elongation factor alpha (EF-1 alpha) promoter. The expression level of AcGFP1 in infected cells five days postinfection was monitored by FACS analysis using the FL1 channel. The expression of AcGFP1 driven by the EF-1 alpha promoter in both stem cell lines was considerably higher compared to the CMV promoter. This is mainly due to a considerably lower rate of silencing of the EF-1 alpha promoter in stem cells compared to the CMV promoter as published (Wang, et al. (2008) Stem Cells Dev 17:279–289).

*You must be logged in to a Purchasing Account in order to purchase these products online, since the purchase of these products may be restricted depending on your account type. Researchers at not-for-profit accounts receive a limited use license with their purchase of the product. Researchers at for-profit accounts must obtain a license prior to purchase. For details please contact licensing@takarabio.com.

Overview

  • Express your protein of interest and an antibiotic resistance marker or fluorescent protein from a single mRNA
  • Quickly identify cells expressing your protein of interest at high levels
  • Bicistronic expression allows faster, more stable clone selection
  • Choice of vectors enables screening via antibiotic selection, fluorescence microscopy, or flow cytometry
    • pLVX vectors are lentiviral vectors—a lentiviral packaging system is required to make lentiviral particles from these constructs.

More Information

Applications

  • Rapidly select stable clones that show high-level expression of your target protein
  • Identify transfected cells by antibiotic selection, fluorescence microscopy, or flow cytometry
References

Jackson, R. J. et al., The novel mechanism of initiation of picornavirus RNA translation Trends Biochem. Sci. 15:477–483 (1990).

Jang, S. K. et al., A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62:2636–2643 (1988).

Rees, S. et al., Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. BioTechniques 20:102–110 (1996).

Additional product information

Please see the product's Certificate of Analysis for information about storage conditions, product components, and technical specifications. Please see the Kit Components List to determine kit components. Certificates of Analysis and Kit Components Lists are located under the Documents tab.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us