We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to iDimerize inducible protein interaction systems
  • Homodimerization systems
  • Heterodimerization systems
  • Reverse dimerization
  • Regulated transcription
  • Dimerizer ligands
  • In vivo applications
  • Dimerization domain antibodies
review of exciting papers that ultilized chemically inducied dimerization iDimerize systems journal club
Tips and FAQs
In-Fusion FAQs
Home › Products › Gene function › iDimerize inducible protein interaction systems › Reverse dimerization

Gene function

  • Gene editing
    • CRISPR-Cas9
      • Long ssDNA for knockins
      • Knockin screening kit
      • Genome-wide sgRNA library system
      • Recombinant Cas9 protein
      • GMP recombinant Cas9
      • Mutation detection kits
      • In vitro transcription and screening kits
      • Cas9-sgRNA gesicle production
      • Cas9 antibodies
      • Plasmid systems
      • Lentiviral systems
      • AAV systems
      • RNA transfection
      • Genotype confirmation kit
      • Indel identification kit
    • Cre recombinase
      • AAV2-Cre recombinase
      • Cre Recombinase Gesicles
      • Cre recombinase RLPs
  • Viral transduction
    • Adeno-associated virus (AAV)
      • Vector systems
        • Helper-free expression system (CMV promoter)
        • Tet-inducible promoter
        • CRISPR/Cas9 system
        • Cre recombinase system
        • Beta-galactosidase system
        • ZsGreen1 control vector
      • qPCR titration
      • Purification kits
      • AAV concentration
      • Packaging systems and cells
        • 293T cell line
        • Extraction solutions
        • Packaging plasmid sets
    • Adenovirus
      • Vectors and packaging
        • Expression system 3
        • Tet inducible
        • Adeno-X 293 cells
      • CAR Receptor Booster
      • Purification kits
      • Titration kits
    • Lentivirus
      • Vector systems
        • Constitutive promoter
        • EF-1 alpha promoter
        • IRES bicistronic
        • Fluorescent protein
        • Tet-inducible
      • Premade lentiviral particles
        • Whole-cell labeling
        • Organelle labeling
        • Tet-On 3G transactivator
      • Packaging systems and cells
        • Lenti-X packaging single shots
        • Lenti-X 293T cells
      • Titration kits
        • Lenti-X GoStix Plus
        • qRT-PCR
        • p24 ELISA
        • Integrated copy number
      • Lentivirus concentration
      • Purification kits
      • Integration site analysis
      • Transduction sponges
        • Lenti-X Transduction Sponge
        • Lenti-X T-Cell Transduction Sponge
      • Transduction enhancers
        • Lenti-X Accelerator
        • Ecotropic Receptor Booster
    • Retrovirus
      • Vector systems
        • Constitutive promoter
        • Fluorescent protein
        • Tet inducible
        • MSCV system
      • Packaging systems and cells
      • Titration kits
      • Retro-X Concentrator
      • Integration site analysis
      • Receptor booster
  • Fluorescent proteins
    • Fluorescent protein plasmids
      • Cyan and green fluorescent proteins
        • AcGFP1 fluorescent protein
        • ZsGreen1 fluorescent protein
        • GFP & GFPuv fluorescent proteins
        • AmCyan1 fluorescent protein
      • Red fluorescent proteins
        • mCherry fluorescent protein
        • DsRed-Monomer fluorescent protein
        • DsRed2 fluorescent protein
        • DsRed-Express and DsRed-Express2 fluorescent proteins
        • tdTomato fluorescent protein
        • AsRed2 fluorescent protein
        • mStrawberry fluorescent protein
      • Far-red fluorescent proteins
        • E2-Crimson fluorescent protein
        • HcRed1 fluorescent protein
        • mRaspberry fluorescent protein
        • mPlum fluorescent protein
      • Orange and yellow fluorescent proteins
        • mOrange2 fluorescent protein
        • mBanana fluorescent protein
        • ZsYellow1 fluorescent protein
      • Photoactivatable and photoswitchable proteins
        • Dendra2 fluorescent protein
        • Timer fluorescent protein
        • PAmCherry fluorescent protein
    • Subcellular labeling plasmids
    • Flow cytometer calibration beads
    • Recombinant fluorescent proteins
  • T-cell transduction and culture
    • RetroNectin reagent
    • LymphoONE T-cell medium
    • Cytokine GoStix Plus assays
    • Anti-CD3 antibody (OKT3)
    • CultiLife culture bags
    • RetroNectin ELISA kit
  • Tet-inducible expression systems
    • Tet-One systems
    • Tet-On 3G systems
      • Tet-On 3G systems
      • Tet-On 3G—lentiviral
      • Tet-On 3G—retroviral
      • Adeno-X Tet-On 3G inducible expression system
      • Tet-On 3G cell lines
      • Tet-On 3G systems—bidirectional
      • Tet-On 3G systems—bicistronic
      • Tet-On 3G systems—EF1-alpha promoter
    • Tet systems legacy products
      • Tet-Off cell lines
      • Tet-On and Tet-Off—2nd generation
      • Tet-tTS transcriptional silencer
    • Tet-inducible miRNA systems
    • TetR monoclonal antibody
    • Tet-approved FBS
  • ProteoTuner protein control systems
    • Plasmid systems
    • Viral systems
    • ProteoTuner antibody
    • Shield1 ligand
  • iDimerize inducible protein interaction systems
    • Homodimerization systems
    • Heterodimerization systems
    • Reverse dimerization
    • Regulated transcription
    • Dimerizer ligands
    • In vivo applications
    • Dimerization domain antibodies
  • Transfection reagents
    • Plasmid transfection reagents
      • Xfect reagent
      • Xfect for mES cells
      • Calcium phosphate transfection
      • Fluorescent transfection controls
    • Protein transfection reagents
    • RNA transfection reagents
  • Mammalian expression plasmids
    • Plasmids with selectable markers
    • Bidirectional promoter vectors
    • Bicistronic IRES vectors
    • MicroRNA expression
  • Cell biology assays
    • Reporter systems
      • Fluorescent protein promoter reporters
        • Promoterless (traditional)
      • Proteasome monitoring
      • Secreted alkaline phosphatase assays
      • Beta galactosidase and LacZ vectors
      • Secreted luciferase assay
      • Fucci cell-cycle vectors
      • Lenti-X Actin Dynamics Monitoring Kit
    • Apoptosis detection kits
      • ApoAlert caspase assays
      • Apoptosis analysis
      • In situ apoptosis detection
    • Epigenetics
      • DNA methylation
        • EpiXplore Methylated DNA Enrichment Kit
        • EpiScope MSP Kit
        • EpiScope Nucleosome Preparation Kit
        • EpiTaq HS
        • EpiScope control DNA
    • Cell biology reagents
      • WST-1 cell proliferation
    • RNA interference
      • miRNA
        • MicroRNA quantitation
      • siRNA
        • siRNA quantitation
    • Cell-culture accessories
      • Magnetic separator for cell culture
      • Antibiotics for cell biology
        • Anhydrotetracycline
      • Antibiotic selection markers & plasmids
    • Signal transduction
      • Pathway profiling vectors
      • Dominant negative vectors
Need help?
Contact Sales
review of exciting papers that ultilized chemically inducied dimerization iDimerize systems journal club
Tips and FAQs
In-Fusion FAQs

iDimerize Reverse Dimerization System (inducible secretion)

Disrupt protein-protein interactions or induce secretion

The iDimerize Reverse Dimerization System brings the disruption of protein complexes under real-time, small-molecule control. A protein of interest is fused to the DmrD binding domain, and the fusion protein molecules aggregate unless the D/D Solubilizer ligand is present. Plasmid and lentiviral (Lenti-X) vector formats are available.

The iDimerize Reverse Dimerization System brings the disruption of protein complexes under real-time, small-molecule control. A protein of interest is fused to the DmrD binding domain, and the fusion protein molecules aggregate unless the D/D Solubilizer ligand is present. Plasmid and lentiviral (Lenti-X) vector formats are available.

Reverse dimerization: Disrupting protein-protein interactions

The iDimerize Reverse Dimerization System is a “reverse dimerization” system—aggregation is the resting state, and the D/D Solubilizer breaks up protein-protein interactions. Therefore, the iDimerize Reverse Dimerization System complements inducible dimerization, and can be used in analogous ways to create inducible alleles. In principle, most processes that can be brought under dimerizer control can also be controlled in the reverse manner using this kit to turn off a process that is activated by oligomerization.

Inducible secretion

The ability to create large protein aggregates has unique applications. For example, adding a secretory signal sequence to fusion proteins allows them to be reversibly stored as aggregates in the endoplasmic reticulum. The ligand can then be added to induce a rapid pulse of protein secretion from the cells. This method has been used to induce rapid, transient, and tightly regulated secretion of human growth hormone (hGH) and insulin (Rivera et al. 2000).

Protein aggregates can also be used in protein trafficking research. For example, this approach has been used to discover the existence of “mega-vesicles” transporting cargo across the Golgi stack (Volchuk et al. 2000).

D/D Solubilizer ligand

The D/D Solubilizer is a synthetic, cell-permeable ligand that can be used to disrupt dimerization of fusion proteins containing the DmrD domain. The D/D Solubilizer has been tested in vitro and in mice. It is nontoxic. We suggest testing various D/D Solubilizer concentrations within the recommended range (10–500 nM) for different lengths of time (30 minutes to 12+ hours) in order to obtain a complete dose-response profile.

 More  Less
Cat. # Product Size Price License Quantity Details
635053 D/D Solubilizer 5 x 500 uL USD $1720.00

The D/D Solubilizer is a membrane-permeant ligand that solubilizes complexes formed by proteins fused to the self-assembly domain (DmrD), provided in the iDimerize Reverse Dimerization System (Cat. No. 635066).

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

Molecular structure of the D/D Solubilizer

Molecular structure of the D/D Solubilizer
Molecular structure of the D/D Solubilizer. The D/D Solubilizer performs the same function as the AP21998 ligand. It is a different molecule than AP21998.

Back

635053: D/D Solubilizer

635053: D/D Solubilizer

Back

Inducible secretion of proteins

Inducible secretion of proteins

Inducible secretion of proteins. Fusion proteins containing DmrD domains localize to the endoplasmic reticulum as massive aggregates (left). When the D/D Solubilizer is added, it dissolves the aggregates and allows the protein to be exported through the secretory apparatus (right). To ensure secretion of the authentic protein, a furin cleavage site is positioned between the DmrD domains and the protein of interest. Since furin is exclusively expressed in the trans Golgi, the fusion protein will be processed as it traverses this compartment, resulting in the secretion of the correctly processed protein. This method has been used to induce rapid, transient and tightly regulated secretion of human growth hormone (hGH) and insulin [Rivera, V. M., et al. (2000) Science 287(5454):826–830].

Back

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer. 7 hr after transfection with a DmrD-tagged Metridia luciferase construct, cells were split into wells of a 6-well plate. The medium was removed and fresh medium was added containing increasing concentrations of D/D Solubilizer. 18 hr later, the media was collected and analyzed using our Ready-To-Glow™ Secreted Luciferase Reporter System (Cat. No. 631731).

Back

Molecular weights of iDimerize ligands

Molecular weights of iDimerize ligands
Molecular weights of iDimerize ligands.
635054 D/D Solubilizer 500 uL USD $435.00

The D/D Solubilizer is a membrane-permeant ligand that solubilizes complexes formed by proteins fused to the self-assembly domain (DmrD), provided in the iDimerize Reverse Dimerization System (Cat. No. 635066).

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

Inducible secretion of proteins

Inducible secretion of proteins

Inducible secretion of proteins. Fusion proteins containing DmrD domains localize to the endoplasmic reticulum as massive aggregates (left). When the D/D Solubilizer is added, it dissolves the aggregates and allows the protein to be exported through the secretory apparatus (right). To ensure secretion of the authentic protein, a furin cleavage site is positioned between the DmrD domains and the protein of interest. Since furin is exclusively expressed in the trans Golgi, the fusion protein will be processed as it traverses this compartment, resulting in the secretion of the correctly processed protein. This method has been used to induce rapid, transient and tightly regulated secretion of human growth hormone (hGH) and insulin [Rivera, V. M., et al. (2000) Science 287(5454):826–830].

Back

Molecular structure of the D/D Solubilizer

Molecular structure of the D/D Solubilizer
Molecular structure of the D/D Solubilizer. The D/D Solubilizer performs the same function as the AP21998 ligand. It is a different molecule than AP21998.

Back

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer. 7 hr after transfection with a DmrD-tagged Metridia luciferase construct, cells were split into wells of a 6-well plate. The medium was removed and fresh medium was added containing increasing concentrations of D/D Solubilizer. 18 hr later, the media was collected and analyzed using our Ready-To-Glow™ Secreted Luciferase Reporter System (Cat. No. 631731).

Back

635054: D/D Solubilizer

635054: D/D Solubilizer

Back

Molecular weights of iDimerize ligands

Molecular weights of iDimerize ligands
Molecular weights of iDimerize ligands.
635066 iDimerize™ Reverse Dimerization System Each USD $1143.00

License Statement

ID Number  
57 This product is covered by U.S. Patent Nos. 8,173,792 and 9,487,787.

The iDimerize Reverse Dimerization System lets you control the subcellular localization, catalytic activity, and secretion of a protein of interest in live cells via a membrane-permeant compound. The system includes the iDimerize Reverse Dimerization Vector Set 1, which contains three mammalian expression vectors encoding fusion tags (i.e., self-assembly domains in combination with different localization sequences) that can be easily added to your protein of interest. The aggregation state of the resulting chimeric protein can be controlled by the addition of a small molecule to the cell medium. In the absence of the compound, the tagged protein expressed by the system self-assembles into complexes; when the compound is added to the cell medium, the complexes disaggregate, allowing the now soluble tagged proteins to regain their normal function. The system also includes a membrane-permeant, solubilizing compound, D/D Solubilizer, required for dissolving aggregates, and two linear selection markers for hygromycin and puromycin resistance.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data Resources

Back

How does iDimerize technology work?

How does iDimerize technology work?

How does iDimerize technology work? A chemical inducer of dimerization, or “dimerizer”, is a cell-permeant organic small molecule with two separate motifs that each bind with high affinity to a specific protein module (Dmr domain) fused onto the protein(s) of interest. Addition of the dimerizer brings the chimeric protein subunits into very close proximity to each other, mimicking the activation of the cellular event that dimerization of interest controls. B/B Homodimerizer induces self-association of two copies of the same protein whereas A/C Heterodimerizer induces association of two different proteins. Conversely, a reverse dimerizer ligand (D/D Solubilizer) will bind to and dissociate a protein that aggregates in its absence.

Back

The Reverse Dimerization System incorporates a binding motif (purple) that causes protein aggregation and a dimerizer (yellow) which can be used to disaggregate (solubilize) the proteins

The Reverse Dimerization System incorporates a binding motif (purple) that causes protein aggregation and a dimerizer (yellow) which can be used to disaggregate (solubilize) the proteins
The Reverse Dimerization System incorporates a binding motif (purple) that causes protein aggregation and a dimerizer (yellow) which can be used to disaggregate (solubilize) the proteins. This system can be used to study intracellular transport and to induce regulated secretion.

Back

Inducible secretion of proteins

Inducible secretion of proteins

Inducible secretion of proteins. Fusion proteins containing DmrD domains localize to the endoplasmic reticulum as massive aggregates (left). When the D/D Solubilizer is added, it dissolves the aggregates and allows the protein to be exported through the secretory apparatus (right). To ensure secretion of the authentic protein, a furin cleavage site is positioned between the DmrD domains and the protein of interest. Since furin is exclusively expressed in the trans Golgi, the fusion protein will be processed as it traverses this compartment, resulting in the secretion of the correctly processed protein. This method has been used to induce rapid, transient and tightly regulated secretion of human growth hormone (hGH) and insulin [Rivera, V. M., et al. (2000) Science 287(5454):826–830].

Back

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer

Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer. 7 hr after transfection with a DmrD-tagged Metridia luciferase construct, cells were split into wells of a 6-well plate. The medium was removed and fresh medium was added containing increasing concentrations of D/D Solubilizer. 18 hr later, the media was collected and analyzed using our Ready-To-Glow™ Secreted Luciferase Reporter System (Cat. No. 631731).

635076 Lenti-X™ iDimerize™ Reverse Dimerization System Each USD $1247.00

License Statement

ID Number  
57 This product is covered by U.S. Patent Nos. 8,173,792 and 9,487,787.

The Lenti-X iDimerize Reverse Dimerization Vector Set 1 is a component of the Lenti-X iDimerize Reverse Dimer System (Cat. No. 635076). This system enables lentiviral delivery of your gene of interest into a variety of mammalian cells, and the expression of your protein of interest, tagged with a domain allowing for reversible protein dimerization/aggregation, via a small molecule "solubilizer".

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components

Inducible homodimer systems using AP20187 ligand Induce homodimers
Indible heterodimer system using AP21967 ligand Induce heterodimers
Induce transcription using AP21697 dimerizer ligand Regulated transcription

Overview

  • Brings the disruption of protein complexes under real-time, small-molecule control
  • Plasmid and lentiviral (Lenti-X) vector formats are available
  • Previously available from ARIAD as the ARGENT Regulated Secretion/Aggregation Kit
  • The D/D Solubilizer performs the same function as the AP21998 ligand, which was previously supplied by ARIAD Pharmaceuticals Inc.; however, it is a different molecule than AP21998

More Information

Applications

  • Rapid, reversible changes in the subcellular location, aggregation state, and/or biological activity of engineered proteins in vitro or in vivo
  • Rapid induction of protein secretion
  • Protein trafficking studies
  • Inducible animal models and cell lines
References

Rivera, V. M. et al. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 287, 826–30 (2000).

Volchuk, A. et al. Megavesicles Implicated in the Rapid Transport of Intracisternal Aggregates across the Golgi Stack. Cell 102, 335–348 (2000).

Additional product information

Please see the product's Certificate of Analysis for information about storage conditions, product components, and technical specifications. Please see the Kit Components List to determine kit components. Certificates of Analysis and Kit Components Lists are located under the Documents tab.


Related links

  • Technology overview
  • iDimerize in vivo protocol
  • Nomenclature changes
  • Published studies
  • Homodimerization systems
  • Heterodimerization systems
  • Reverse dimerization
  • Regulated transcription
  • Dimerizer ligands
  • Dimerization domain antibodies
  • iDimerize journal club

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us