We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to iDimerize inducible protein interaction systems
  • Homodimerization systems
  • Heterodimerization systems
  • Reverse dimerization
  • Regulated transcription
  • Dimerizer ligands
  • In vivo applications
  • Dimerization domain antibodies
Learn more about our tet, ProteoTuner, and iDimerize inducible systems Inducible systems
A/C Heterodimerizer, B/B Homodimeirzer, AP20187, AP21967 Dimerizer ligands
Home › Products › Gene function › iDimerize inducible protein interaction systems › Heterodimerization systems

Gene function

  • Gene editing
    • CRISPR-Cas9
      • Long ssDNA for knockins
      • Knockin screening kit
      • Genome-wide sgRNA library system
      • Recombinant Cas9 protein
      • GMP recombinant Cas9
      • Mutation detection kits
      • In vitro transcription and screening kits
      • Cas9-sgRNA gesicle production
      • Cas9 antibodies
      • Plasmid systems
      • Lentiviral systems
      • AAV systems
      • RNA transfection
      • Genotype confirmation kit
      • Indel identification kit
    • Cre recombinase
      • AAV2-Cre recombinase
      • Cre Recombinase Gesicles
      • Cre recombinase RLPs
  • Viral transduction
    • Adeno-associated virus (AAV)
      • Vector systems
        • Helper-free expression system (CMV promoter)
        • Tet-inducible promoter
        • CRISPR/Cas9 system
        • Cre recombinase system
        • Beta-galactosidase system
        • ZsGreen1 control vector
      • qPCR titration
      • Purification kits
      • AAV concentration
      • Packaging systems and cells
        • 293T cell line
        • Extraction solutions
        • Packaging plasmid sets
    • Adenovirus
      • Vectors and packaging
        • Expression system 3
        • Tet inducible
        • Adeno-X 293 cells
      • CAR Receptor Booster
      • Purification kits
      • Titration kits
    • Lentivirus
      • Vector systems
        • Constitutive promoter
        • EF-1 alpha promoter
        • IRES bicistronic
        • Fluorescent protein
        • Tet-inducible
      • Premade lentiviral particles
        • Whole-cell labeling
        • Organelle labeling
        • Tet-On 3G transactivator
      • Packaging systems and cells
        • Lenti-X packaging single shots
        • Lenti-X 293T cells
      • Titration kits
        • Lenti-X GoStix Plus
        • qRT-PCR
        • p24 ELISA
        • Integrated copy number
      • Lentivirus concentration
      • Purification kits
      • Integration site analysis
      • Transduction sponges
        • Lenti-X Transduction Sponge
        • Lenti-X T-Cell Transduction Sponge
      • Transduction enhancers
        • Lenti-X Accelerator
        • Ecotropic Receptor Booster
    • Retrovirus
      • Vector systems
        • Constitutive promoter
        • Fluorescent protein
        • Tet inducible
        • MSCV system
      • Packaging systems and cells
      • Titration kits
      • Retro-X Concentrator
      • Integration site analysis
      • Receptor booster
  • Fluorescent proteins
    • Fluorescent protein plasmids
      • Cyan and green fluorescent proteins
        • AcGFP1 fluorescent protein
        • ZsGreen1 fluorescent protein
        • GFP & GFPuv fluorescent proteins
        • AmCyan1 fluorescent protein
      • Red fluorescent proteins
        • mCherry fluorescent protein
        • DsRed-Monomer fluorescent protein
        • DsRed2 fluorescent protein
        • DsRed-Express and DsRed-Express2 fluorescent proteins
        • tdTomato fluorescent protein
        • AsRed2 fluorescent protein
        • mStrawberry fluorescent protein
      • Far-red fluorescent proteins
        • E2-Crimson fluorescent protein
        • HcRed1 fluorescent protein
        • mRaspberry fluorescent protein
        • mPlum fluorescent protein
      • Orange and yellow fluorescent proteins
        • mOrange2 fluorescent protein
        • mBanana fluorescent protein
        • ZsYellow1 fluorescent protein
      • Photoactivatable and photoswitchable proteins
        • Dendra2 fluorescent protein
        • Timer fluorescent protein
        • PAmCherry fluorescent protein
    • Subcellular labeling plasmids
    • Flow cytometer calibration beads
    • Recombinant fluorescent proteins
  • T-cell transduction and culture
    • RetroNectin reagent
    • LymphoONE T-cell medium
    • Cytokine GoStix Plus assays
    • Anti-CD3 antibody (OKT3)
    • CultiLife culture bags
    • RetroNectin ELISA kit
  • Tet-inducible expression systems
    • Tet-One systems
    • Tet-On 3G systems
      • Tet-On 3G systems
      • Tet-On 3G—lentiviral
      • Tet-On 3G—retroviral
      • Adeno-X Tet-On 3G inducible expression system
      • Tet-On 3G cell lines
      • Tet-On 3G systems—bidirectional
      • Tet-On 3G systems—bicistronic
      • Tet-On 3G systems—EF1-alpha promoter
    • Tet systems legacy products
      • Tet-Off cell lines
      • Tet-On and Tet-Off—2nd generation
      • Tet-tTS transcriptional silencer
    • Tet-inducible miRNA systems
    • TetR monoclonal antibody
    • Tet-approved FBS
  • ProteoTuner protein control systems
    • Plasmid systems
    • Viral systems
    • ProteoTuner antibody
    • Shield1 ligand
  • iDimerize inducible protein interaction systems
    • Homodimerization systems
    • Heterodimerization systems
    • Reverse dimerization
    • Regulated transcription
    • Dimerizer ligands
    • In vivo applications
    • Dimerization domain antibodies
  • Transfection reagents
    • Plasmid transfection reagents
      • Xfect reagent
      • Xfect for mES cells
      • Calcium phosphate transfection
      • Fluorescent transfection controls
    • Protein transfection reagents
    • RNA transfection reagents
  • Mammalian expression plasmids
    • Plasmids with selectable markers
    • Bidirectional promoter vectors
    • Bicistronic IRES vectors
    • MicroRNA expression
  • Cell biology assays
    • Reporter systems
      • Fluorescent protein promoter reporters
        • Promoterless (traditional)
      • Proteasome monitoring
      • Secreted alkaline phosphatase assays
      • Beta galactosidase and LacZ vectors
      • Secreted luciferase assay
      • Fucci cell-cycle vectors
      • Lenti-X Actin Dynamics Monitoring Kit
    • Apoptosis detection kits
      • ApoAlert caspase assays
      • Apoptosis analysis
      • In situ apoptosis detection
    • Epigenetics
      • DNA methylation
        • EpiXplore Methylated DNA Enrichment Kit
        • EpiScope MSP Kit
        • EpiScope Nucleosome Preparation Kit
        • EpiTaq HS
        • EpiScope control DNA
    • Cell biology reagents
      • WST-1 cell proliferation
    • RNA interference
      • miRNA
        • MicroRNA quantitation
      • siRNA
        • siRNA quantitation
    • Cell-culture accessories
      • Magnetic separator for cell culture
      • Antibiotics for cell biology
        • Anhydrotetracycline
      • Antibiotic selection markers & plasmids
    • Signal transduction
      • Pathway profiling vectors
      • Dominant negative vectors
Need help?
Contact Sales
Learn more about our tet, ProteoTuner, and iDimerize inducible systems Inducible systems
A/C Heterodimerizer, B/B Homodimeirzer, AP20187, AP21967 Dimerizer ligands

iDimerize Inducible Heterodimer System

Inducible heterodimerization systems

The iDimerize Inducible Heterodimer System can be used to create and control specific interactions between two different proteins. The proteins of interest are fused to the DmrA and DmrC binding domains, respectively, and dimerization is induced by adding the cell-permeant ligand A/C Heterodimerizer (identical to the AP21967 ligand) to the culture medium or by administering it in vivo. Plasmid and lentiviral (Lenti-X) vector formats are available.

The iDimerize Inducible Heterodimer System can be used to create and control specific interactions between two different proteins. The proteins of interest are fused to the DmrA and DmrC binding domains, respectively, and dimerization is induced by adding the cell permeant ligand A/C Heterodimerizer (identical to the AP21967 ligand) to the culture medium or by administering it in vivo. Plasmid and lentiviral (Lenti-X) vector formats are available.

iDimerize Inducible Heterodimer System (with Tet-On 3G technology)

One challenge of ligand-dependent dimerization experiments is that non-ligand-induced dimerization events may occur if the proteins of interest are expressed at high levels. This is especially problematic if the target proteins are membrane-bound, because the local concentrations can increase quickly due to the limited space on the membrane. We’ve combined iDimerize and Tet-On 3G technologies to eliminate these unwanted events. First, use doxycycline (Dox) to optimize the proteins’ expression to physiologically relevant levels. Then induce dimerization by adding the dimerizer ligand to your culture medium.

 More  Less
Cat. # Product Size Price License Quantity Details
635079 iDimerize™ Inducible Heterodimer System (with Tet-On® 3G) Each Inquire for Quotation

License Statement

ID Number  
42 Use of the Tetracycline controllable expression systems (the "Tet Technology") is covered by a series of patents including U.S. Patent # 8383364, # 9181556 , European patents EP # 1954811, #2352833 and corresponding patent claims outside these regions which are proprietary to TET Systems GmbH & Co. KG. Academic research institutions are granted an automatic license with the purchase of this product to use the Tet Technology only for internal, academic research purposes, which license specifically excludes the right to sell, or otherwise transfer, the Tet Technology or its component parts to third parties. Notwithstanding the above, academic and not-for profit research institutions whose research using the Tet Technology is sponsored by for profit organizations, which shall receive ownership to any data and results stemming from the sponsored research, shall need a commercial license agreement from TET Systems in order to use the Tet Technology. In accepting this license, all users acknowledge that the Tet Technology is experimental in nature. TET Systems GmbH & Co. KG makes no warranties, express or implied or of any kind, and hereby disclaims any warranties, representations, or guarantees of any kind as to the Tet Technology, patents, or products. All others are invited to request a license from TET Systems GmbH & Co. KG prior to purchasing these reagents or using them for any purpose. Takara Bio USA, Inc. is required by its licensing agreement to submit a report of all purchasers of the Tet-controllable expression system to TET Systems.

For license information, please contact:
GSF/CEO
TET Systems GmbH & Co. KG,
Im Neuenheimer Feld 582
69120 Heidelberg
Germany
Tel: +49 6221 5880400
Fax: +49 6221 5880404
email: info@tetsystems.com
or use the electronic licensing request form via https://www.tetsystems.com/licensing/
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.
*

The iDimerize Inducible Heterodimer System (with Tet-On 3G) lets you control the expression levels and heterodimerization of two different proteins of interest, encoded on a single vector, in live cells. The system includes the iDimerize Inducible Heterodimer Vector Set 2, which contains a mammalian bidirectional expression vector (pTRE3G-BI-Het1) that allows simultaneous, doxycycline-dependent expression of two proteins of interest, tagged with the DmrA and DmrC domains, respectively, in Tet-On 3G transactivator-expressing cells. The activity and localization of the resulting DmrA- and DmrC-tagged proteins is controlled by the addition of the A/C Heterodimerizer.

The iDimerize Inducible Heterodimer System (with Tet-On 3G) includes vectors and linear selection markers, our highly efficient transfection reagent, Xfect, Tet System Approved FBS, and the A/C Heterodimerizer.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like
635074 Lenti-X™ iDimerize™ Inducible Heterodimer System Each USD $1247.00

The Lenti-X iDimerize Inducible Heterodimer System lets you control the heterodimerization of two different proteins of interest in live cells by adding a small molecule, the membrane-permeant compound A/C Heterodimerizer, to the culture medium. The system includes the Lenti-X iDimerize Inducible Heterodimer Vector Set 1, which contains four lentiviral vectors encoding dimerization tags (DmrA or DmrC, respectively), as well as subcellular localization tags that can be easily fused to your protein of interest. In combination with a lentiviral packaging system, the optimized Lenti-X constructs allow for packaging and delivery of high-titer lentivirus to the widest range of cell types. Using this system, the activity and/or localization of the resulting chimeric protein can be controlled by the addition of A/C Heterodimerizer, which is required for heterodimerization and is also included.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like

Required Products

Cat. # Product Size Price License Quantity Details
632180 Lenti-X™ 293T Cell Line 1 mL USD $422.00

License Statement

ID Number  
406 This product is the subject of a technology license agreement for internal research use only. Use of this product other than for research use may require additional licenses. Information on license restrictions or for uses other than research may be obtained by contacting licensing@takarabio.com.

The Lenti-X 293T Cell Line is a subclone of the transformed human embryonic kidney cell line, HEK 293, which is highly transfectable and supports high levels of viral protein expression. When transfected with Lenti-X Packaging Single Shots and a lentiviral vector, these cells are capable of producing lentiviral titers as high as >108 ifu/ml, as determined by flow cytometry. The cell line also constitutively expresses the simian virus 40 (SV40) large T antigen.

Documents Components You May Also Like Image Data Resources

Back

632180: Lenti-X 293T Cell Line

632180: Lenti-X 293T Cell Line

Back

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein

Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein
Clontech's lentiviral packaging system (Panel A) and a lentiviral packaging system from a leading competitor (Panel B) were each used to generate viral supernatants from their respective lentiviral system vectors that were engineered to express the ZsGreen1 fluorescent protein. As little as 10 µl of supernatant from Lenti-X transduced the majority of these HeLa cells, whereas 10 µl of supernatant from the other system transduced only a small percentage of the cells. Transduced cells were quantified by flow cytometry.

Back

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus

Transduction of neural progenitor cells by Lenti-X lentivirus. Recombinant lentivirus for expressing ZsGreen1 was produced using Lenti-X virus and used to transduce normal human neural progenitor cells. A single transduced cell is shown under phase contrast microscopy (Panel A) and fluorescence microscopy (Panel B).

Back

High-titer lentivirus production

High-titer lentivirus production

High-titer lentivirus production. Lenti-X 293T cells were transduced with the indicated volumes (µl) of lentiviral packaging supernatant generated with the Lenti-X Expression System and then selected with puromycin for 9 days to allow the formation of the resistant colonies, which were then stained with crystal violet.

Back

293T cell line for higher titers

293T cell line for higher titers

293T cell line for higher titers. We used our fourth-generation lentiviral packaging system and one of our pLVX-lentiviral vectors to compare the virus production of the Lenti-X 293T Cell Line to that of two other commonly used HEK 293-based cell lines. Lenti-X 293T cells clearly outperformed the other cell lines—producing over 6X more virus than 293FT cells and up to 30X more virus than the parental HEK 293 cell line.

631275 Lenti-X™ Packaging Single Shots (VSV-G) 16 Rxns USD $1071.00

License Statement

ID Number  
63 Use of this product is covered by one or more of the following U.S. Patent Nos. and corresponding patent claims outside the U.S.: 8,562,966, 8,557,231. This product is intended for research purposes only. It may not be used for (i) any human or veterinary use, including without limitation therapeutic and prophylactic use, (ii) any clinical use, including without limitation diagnostic use, (iii) screening of chemical and/or biological compounds for the identification of pharmaceutically active agents (including but not limited to screening of small molecules), target validation, preclinical testing services, or drug development. Any use of this product for any of the above mentioned purposes requires a license from the Massachusetts Institute of Technology.
259 This Product is protected by one or more patents from the family consisting of: JP6454352 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.

Lenti-X Packaging Single Shots (VSV-G) provide an extremely simple and consistent one-step method for producing high-titer lentivirus. No additional transfection reagent is needed because Lenti-X Packaging Single Shots (VSV-G) consist of pre-aliquoted, lyophilized, single tubes of Xfect Transfection Reagent premixed with an optimized formulation of VSV-G pseudotyped Lenti-X lentiviral packaging plasmids. High-titer virus is produced by simply reconstituting this mixture with your lentiviral vector of choice in sterile water and adding it to 293T cells, e.g., Lenti-X 293T Cells (Cat. # 632180), in a 10 cm dish.

Documents Components You May Also Like Image Data

Back

The Lenti-X Packaging Single Shots (VSV-G) protocol

The Lenti-X Packaging Single Shots (VSV-G) protocol
The Lenti-X Packaging Single Shots (VSV-G) protocol.

Back

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers

Consistent, high-efficiency transfections lead to high titers. A lentiviral vector containing the ZsGreen1 gene was packaged according to the Lenti-X single shots protocol in four independent experiments. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots; the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. 48 hours after transfection, the cells were imaged by fluorescence microscopy (Panel A, top) and light microscopy (Panel A, bottom). After images were taken, the supernatant was harvested and used infect HT1080 cells for titer determination (Panel B, IFU/ml).

Back

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots

High-titer virus was produced regardless of the lentiviral vector backbone with Lenti-X packaging single shots. A CMV ZsGreen1 expression cassette was cloned into several lentiviral vector backbones. These vectors were then packaged into lentivirus using the Lenti-X packaging single shots following the provided protocol. Briefly, 7 µg of pLVX-ZsGreen1 plasmid was added to each of four Lenti-X single shots, and the tubes were vortexed for 20 sec and incubated at room temperature for 10 min. Then, the mixture was added to cultured Lenti-X 293T cells that were approximately 80% confluent. After 48 hours, titer was determined using several methods. To determine infectivity, the supernatant was harvested and used to infect HT1080 cells (Flow Cytometry). Harvested viral supernatants were also analyzed by RT-PCR to quantify viral genome copies (qRT-PCR, Lenti-X qRT-PCR Titration Kit), ELISA to measure p24 (p24 ELISA, Lenti-X p24 Rapid Titer Kit), and by a rapid lentiviral detection method (Lenti-X GoStix).

Back

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems

A comparison of fourth- and third-generation lentiviral packaging systems . Our Lenti-X Packaging single shots utilize a packaging system that consists of five separate components (Panel A), mixed in proprietary proportions for optimized packaging activity. The separation of the gag, pol, and env genes effectively reduces the incidence of RCL (Wu et al., 2000). High levels of expression of essential viral components are driven by the Tet-Off and Tat transactivators, which induce a cascade of expression that results in high titers of lentivirus. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant lentiviral particle. Not all vector elements are shown. Other 3rd generation lentiviral packaging systems (Panel B) generate lower titers, do not contain separate gag and pol sequences, and do not use a transactivation cascade mechanism.

Back

631275: Lenti-X Packaging Single Shots (VSV-G)

631275: Lenti-X Packaging Single Shots (VSV-G)
635067 iDimerize™ Inducible Heterodimer System Each USD $1143.00

The iDimerize Inducible Heterodimer System lets you control the heterodimerization of two different proteins of interest in live cells via a membrane-permeant compound. The system includes the iDimerize Inducible Heterodimer Vector Set 1, which contains three mammalian expression vectors encoding fusion tags that can be easily added to your proteins of interest. The activity and localization of the resulting chimeric proteins can be controlled by the addition of a small molecule to the cell medium. The system also includes the membrane-permeant compound, A/C Heterodimerizer, required for heterodimerization, and two linear selection markers for hygromycin and puromycin resistance.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

Inducible dimerization of heterodimers

Inducible dimerization of heterodimers
Inducible dimerization of heterodimers. Fusion proteins are created which contain the DmrA (green) and DmrC (red) dimerization domains respectively. The two proteins do not interact until the A/C heterodimerizer (AP21967) is added. This cell-permeant ligand induces the fusion proteins to interact, which activates downstream events such as signal transduction pathways.

Back

How does iDimerize technology work?

How does iDimerize technology work?

How does iDimerize technology work? A chemical inducer of dimerization, or “dimerizer”, is a cell-permeant organic small molecule with two separate motifs that each bind with high affinity to a specific protein module (Dmr domain) fused onto the protein(s) of interest. Addition of the dimerizer brings the chimeric protein subunits into very close proximity to each other, mimicking the activation of the cellular event that dimerization of interest controls. B/B Homodimerizer induces self-association of two copies of the same protein whereas A/C Heterodimerizer induces association of two different proteins. Conversely, a reverse dimerizer ligand (D/D Solubilizer) will bind to and dissociate a protein that aggregates in its absence.

635056 A/C Heterodimerizer 5 x 500 uL USD $687.00

A/C Heterodimerizer is a membrane-permeant ligand that causes heterodimerization of proteins fused to two distinct dimerization domains—DmrA and DmrC—provided in the iDimerize Inducible Heterodimer System (Cat. #  635067) and the iDimerize Regulated Transcription System (Cat. # 635081). NOTE: The A/C Heterodimerizer is identical to the AP21967 ligand previously supplied in the ARGENT Regulated Heterodimerization Kit from ARIAD Pharmaceuticals, Inc.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

Molecular weights of iDimerize ligands

Molecular weights of iDimerize ligands
Molecular weights of iDimerize ligands.
635055 A/C Heterodimerizer 5 mg USD $854.00

A/C Heterodimerizer is a membrane-permeant ligand that causes heterodimerization of proteins fused to two distinct dimerization domains—DmrA and DmrC—provided in the iDimerize Inducible Heterodimer System (Cat. # 635067) and the iDimerize Regulated Transcription System (Cat. # 635081). NOTE: The A/C Heterodimerizer is identical to the AP21967 ligand previously supplied in the ARGENT Regulated Heterodimerization Kit from ARIAD Pharmaceuticals, Inc.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

635055: A/C Heterodimerizer

635055: A/C Heterodimerizer

Back

Molecular structure of A/C Heterodimerizer (AP21967)

Molecular structure of A/C Heterodimerizer (AP21967)
Molecular structure of A/C Heterodimerizer (AP21967).

Back

Molecular weights of iDimerize ligands

Molecular weights of iDimerize ligands
Molecular weights of iDimerize ligands.

*You must be logged in to a Purchasing Account in order to purchase these products online, since the purchase of these products may be restricted depending on your account type. Researchers at not-for-profit accounts receive a limited use license with their purchase of the product. Researchers at for-profit accounts must obtain a license prior to purchase. For details please contact licensing@takarabio.com.

Inducible homodimer systems using AP20187 ligand Induce homodimers
Citations Published studies
Induce transcription using AP21697 dimerizer ligand Regulated transcription

Overview

  • Achieve small-molecule control of cellular events that are usually activated by protein heterodimerization
  • Control the subcellular localization of a target protein
  • A/C Heterodimerizer is identical to the AP21967 ligand
  • For inducible control of transcription factors, use the iDimerize Regulated Transcription System
  • Plasmid and lentiviral (Lenti-X) vector formats are available
  • Previously available from ARIAD Pharmaceuticals, Inc., as the ARGENT Regulated Heterodimerization Kit

More Information

Applications

  • Create and control interactions between two different proteins
  • Create conditional alleles of receptors and signaling molecules
  • Activate cell surface receptors or other signaling proteins
  • Recruit signaling proteins to specific subcellular locations (e.g., the plasma membrane or nucleus)
  • Reconstitute enzyme activity by inducing the interaction of separate polypeptides
  • Functional analysis of a signaling pathway in multiple cell types
  • Inducible protein dimerization in animal models and cultured cell lines

Additional product information

Please see the product's Certificate of Analysis for information about storage conditions, product components, and technical specifications. Please see the Kit Components List to determine kit components. Certificates of Analysis and Kit Components Lists are located under the Documents tab.


Related links

  • Technology overview
  • iDimerize in vivo protocol
  • Nomenclature changes
  • Published studies
  • Homodimerization systems
  • Heterodimerization systems
  • Reverse dimerization
  • Regulated transcription
  • Dimerizer ligands
  • Dimerization domain antibodies
  • iDimerize journal club

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us