We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Transfection reagents
  • Xfect Transfection Reagent
  • Transfection tips
  • Cell lines transfected with the Xfect reagent
  • Protein transfection FAQs
  • Xfect RNA Transfection Reagent
  • Transfection reagent products
  • Protocol: transfection of cerebellar slice cultures with Xfect reagent
  • Calcium phosphate transfection of neurons
Learn more about the CalPhos Mammalian Transfection Kit. CalPhos Mammalian Transfection Kit
cloning learning center Cloning learning center
Home › Learning centers › Gene function › Transfection reagents › Calcium phosphate transfection of neurons

Gene function

  • Gene editing
    • Gene editing product finder
    • Gene editing tools and information
      • sgRNA design tools
      • Tools for successful CRISPR/Cas9 genome editing
      • Gene editing posters
      • Customer data for Guide-it products
      • How to design sgRNA sequences
      • Introduction to the CRISPR/Cas9 system
      • Gene editing of CD3+ T cells and CD34+ HSCs
    • CRISPR/Cas9 knockouts
      • Mutation detection kit comparison
      • Screening for effective guide RNAs
      • Monoallelic versus biallelic mutants
      • Indel identification kit for mutation characterization
    • CRISPR/Cas9 knockins
      • Choosing an HDR template format
      • Homology-directed repair FAQs
      • Mouse CRISPR knockin protocol
      • Site-specific gene knockins using long ssDNA
      • Efficient CRISPR/Cas9-mediated knockins in iPS cells
      • Oligo design tool for detecting precise insertions
        • Oligo design tool user guide (insertions)
    • Genome-wide screening
      • CRISPR library screening
      • CRISPR library screening webinar
      • Phenotypic screen using sgRNA library system
    • Creating and screening for SNPs
      • SNP detection with knockin screening kit
      • Oligo design tool for SNP screening
        • Oligo design tool user guide (SNPs)
      • Sign up: SNP engineering webinar
      • Guide-it SNP Screening Kit FAQs
    • CRISPR/Cas9 delivery methods
      • Electroporation-grade Cas9 for editing in diverse cell types
      • CRISPR/Cas9 gene editing with AAV
      • CRISPR/Cas9 gesicles overview
      • Cas9 Gesicles—reduced off-target effects
      • sgRNA-Cas9 delivery to many cell types
      • Tet-inducible Cas9 for gene editing
    • Cre recombinase
      • Control your Cre recombinase experiments
      • Fast Cre delivery with gesicle technology
  • Viral transduction
    • Recombinant virus comparison
    • Product finder
    • Transduction posters
    • Lentivirus
      • Webinars
        • Webinar: Cellular reprogramming of cancer cells for immunotherapy
        • Lentiviral particles webinar
      • Customizable SARS-CoV-2 pseudovirus
      • Lenti-X FAQs
      • Lentiviral workflow
      • Lentiviral products guide
      • Lentivirus biosafety
      • Lentiviral tips
      • Lentiviral vectors
      • Lenti-X packaging
      • High-throughput lentivirus production
      • Lenti-X Concentrator
      • Lentiviral titration
      • Lenti-X GoStix Plus video protocols
      • Lenti-X GoStix Plus FAQs
      • Rapid lentivirus titration by p24 ELISA
      • Lentiviral particles
      • Lentiviral particles—fluorescent
      • Lentiviral particles FAQs
    • Retrovirus
      • Retroviral products
      • Retro-X FAQs
      • Retro-X packaging
      • Retro-X Concentrator
    • Adeno-associated virus
      • AAV workflow
      • AAV products
      • AAV FAQs
      • AAV tech notes
        • Customer data: Purified AAV9 delivery (mouse brain)
        • Customer data: Purified AAV9 delivery (songbird brain)
        • Serotype-independent AAV vector purification
        • Customer data: Purified AAV2 delivery (mouse brain)
      • AAV videos
        • AAV2 purification video
        • AAVpro "All Serotypes" protocols
      • AAVpro Concentrator overview
    • Adenovirus
      • Adenoviral FAQs
      • Adenoviral products
      • Fastest, easiest adenoviral system ever
      • Tet-inducible adenovirus
      • Adenovirus purification kits
      • Adenovirus purification mega-scale
      • Adenovirus rapid titer
      • Adenoviral titration
  • T-cell transduction and culture
    • Technology overview
    • Adoptive T-cell therapy (ACT)
    • RetroNectin FAQs
    • Hematopoietic cell transduction
    • T-cell expansion
    • Serum-free T-cell culture
    • CultiLife culture bags protocol
    • Cytokine analysis
  • Inducible systems
    • iDimerize systems
      • Inducible protein-protein interactions—iDimerize systems
      • iDimerize systems journal club
      • iDimerize in vivo protocol
      • iDimerize systems citations
      • ARGENT cell signaling regulation kits from ARIAD
    • ProteoTuner systems
      • ProteoTuner technology overview
      • ProteoTuner citations
      • Inducible protein stabilization systems product selection guide
    • Tet-inducible systems
      • Tet systems product selection guide
      • Tet systems overview
      • Tet-One technology overview
      • Tet-On 3G plasmid system kit components
      • Tet-On 3G lentiviral system kit components
      • Tet system webinars
  • Transfection reagents
    • Xfect Transfection Reagent
    • Transfection tips
    • Cell lines transfected with the Xfect reagent
    • Protein transfection FAQs
    • Xfect RNA Transfection Reagent
    • Transfection reagent products
    • Protocol: transfection of cerebellar slice cultures with Xfect reagent
    • Calcium phosphate transfection of neurons
  • Fluorescent proteins
    • Fluorescent protein vector finder
    • Fluorescent protein excitation and emission maxima
    • Fluorescent protein antibodies selection guide
    • Fluorescent protein antibody citations
      • GFP antibody citations
      • RFP antibody citations
    • Fluorescent protein quick guide
    • Fluorescent retroviral expression vectors
    • Verify miRNA expression
    • Find EGFP vector alternatives
  • Cell biology assays
    • Technical notes
      • Cell viability and proliferation measurement
    • Citations
New products
Contact Sales
Learn more about the CalPhos Mammalian Transfection Kit. CalPhos Mammalian Transfection Kit
cloning learning center Cloning learning center
Tech Note

Calcium phosphate transfection of neurons

Introduction Results Conclusions Methods References

Introduction  

Cultured neurons are among the most difficult cells to transfect due to their sensitivity to microenvironmental changes. While calcium phosphate is widely used to transfect neurons due to its low toxicity (Goetze et al. 2004; Holz et al. 2000; Jiang and Chen 2006; Micheva et al. 2003; Passafaro et al. 2003; W. G. Chen et al. 2003; Xia et al. 1996), transfection efficiencies are extremely low compared to those of other methods (~1–5%, on average) (Craig 1998; Washbourne and McAllister 2002; Xia et al. 1996). To address these shortcomings, researchers used our CalPhos Mammalian Transfection Kit to develop a novel calcium phosphate-based transfection method for cultured neurons that increases transfection efficiency tenfold while maintaining low toxicity (Figure 1). These improvements were accomplished by two key modifications: first, the DNA-Ca2+ and phosphate solutions are gently mixed to obtain a fine, homogeneous precipitate. Second, the precipitate is dissolved in a slightly acidic cell culture medium to reduce its toxicity. Combined, these modifications provide a high-efficiency, low-toxicity protocol that enables the ready transfection of single autaptic neurons as well as mature neurons (Jiang and Chen 2006).

Figure 1. Flowchart of the Ca2+-phosphate transfection protocol.

Results  

Formation of a homogeneous DNA-Ca2+-phosphate precipitate

As it is believed that the DNA-Ca2+-phosphate precipitate enters cells through endocytosis, followed by some DNA molecules making their way to the nucleus, the authors first looked to the precipitate formed. They found that the continuous vortexing used in other protocols often results in large precipitate particles with uneven distribution (Figure 2, Panel A). As these particles are not endocytosed efficiently by neurons, the authors opted for a gradual mixing of the DNA-CaCl2 and 2X HBS solutions. When coupled with very mild (rather than continuous) vortexing, researchers were able to consistently form small, easily-endocytosed precipitate particles (Figure 2, Panels B and C).

Figure 2. Formation and subsequent dissolution of the DNA-Ca2+-phosphate precipitate. Panel A. Continuous vortexing when mixing DNA with Ca2+ and phosphate buffer results in large clusters of precipitate (image taken after 1 hr incubation). Panels B and C. Formation of an optimal DNA-Ca2+-phosphate precipitate through gentle vortexing during mixing (image taken after 1 hr incubation). Panel D. Dissolution of the precipitate with slightly acidic transfection medium pre-equilibrated in a 10% CO2 incubator. Scale bar = 50 mm.

Improved dissolution of the DNA-Ca2+-phosphate precipitate

A critical parameter for this protocol is the dissolution of the DNA-Ca2+-phosphate precipitate following the transfection incubation period. While most protocols recommend simply washing the cells with transfection medium, it was found that this was insufficient to remove the excess precipitate.

To solve this problem, serum-free transfection medium was slightly acidified by pre-equilibrating it in a 10% CO2 incubator. This acidification helps to dissolve the precipitate, significantly reducing neuronal toxicity and allowing the cells to be incubated with the precipitate for a much longer period of time (Figure 2, Panel D).

Finally, rather than performing transfections in the same plate that neurons were cultured on, transfections were done in a new, separate culture plate. Neurons were plated on coverslips, transferred to a new culture plate for transfection, and then returned to their original culture plate and medium post-transfection.

High-efficiency transfection of low-density neuronal cultures

Due to these improvements, the authors achieved transfection efficiencies of up to 60% in low-density primary neuronal cultures with incubation times of 45 min–3 hr (Figure 3). One microisland contained a total of 22 neurons, of which ~80% (17 neurons) were transfected. The entire coverslip contained 127 transfected neurons out of a total of 211, yielding a transfection rate of ~60.2%. In contrast, previous reports obtained an average transfection efficiency of 1–5% (Köhrmann et al. 1999; Watanabe et al. 1999; Xia et al. 1996). Significantly, exogenous gene expression was both stable and rapid: GFP expression was observed within 4 hours of transfection and persisted for more than 7 days. These features allowed the authors to use this method to study endophilin function in synaptic vesicle endocytosis (Y. Chen et al. 2003).

Figure 3. High transfection efficiency is achieved in low-density hippocampal cultures with our improved protocol. Phase contrast (Panels A–C) or fluorescent (Panels D–F) microscopy was used to capture images of GFP-transfected cells in three independent transfections. Neurons were cultured for 10–15 days according to previously described methods (Chen, Haratas, and Tsien 2004; Jiang, Deng, and Chen 2004). Figures are reproduced from Jiang, Deng, and Chen 2004 and Jiang and Chen 2006.

Transfection of mature neurons in culture

Calcium phosphate methods are often used for transfecting young neurons (2–10 days in culture). Mature neurons are more difficult to transfect due to their tendency to die shortly after transfection. This improved protocol enabled the successful transfection of not only young (Figure 4, Panels A and B) but also mature neurons, allowing for the analysis of cells that have well-established synaptic networks (e.g., cells that have been grown for more than 20 days in culture) (Figure 4, Panels C and D). The new method allowed for the successful transfection of 82-day-old neurons (Figure 4, Panel D), a remarkable achievement given that neurons rarely survive longer than 3 months in culture.

Figure 4. Successful transfection of both immature and mature neurons. Panels A and B. Transfection of young neurons (2 and 7 days in vitro [d.i.v.]) with EGFP. Panels C and D. Transfection of mature neurons (24 and 82 d.i.v.) with EGFP. Scale bar = 50 mm. Figures are reproduced from Jiang and Chen 2006.

High neuronal and low glial transfection efficiency

The authors' neuronal cultures contained many glial cells due to neurons being plated on a monolayer of cortical astrocytes. Excessive astrocyte transfection is undesirable, as it can generate high background signal (e.g., GFP) or could affect neuronal function through neuron-glia interactions. Notably, this method results in a low rate of glial transfection (Figure 5). Transfections were also effective for Banker-type cultures, where neuron-glial contact is minimal. This may be due to the presence of cytosine arabinoside, a reagent that stops glial proliferation and may also suppress transfection. Combined, this protocol provided transfection efficiencies in low-density neuronal cultures of 25.2% (grown with astrocytes) or 21.6% (grown without astrocytes) (Figure 5, Panels A and B). Finally, the authors demonstrated the compatibility of this protocol with several different constructs, including Rab3a and dynamin (Figure 5, Panels C and D).

Figure 5. Transfection efficiency in glial cells is very low. Panel A. Only a few glial cells (arrowhead) are transfected in neuronal cultures with a monolayer of astrocytes. Panel B. In Banker-type cultures where neurons usually do not contact glial cells directly, transfection efficiency remains high (21.6%). Panels C and D. Successful transfections of EGFP-Rab3a (Panel C) and EGFP-dynamin (Panel D) demonstrate the compatibility of this protocol with multiple different constructs. Figures are reproduced from Jiang and Chen 2006.

Conclusions  

Combined, these results demonstrate that this protocol, powered by our CalPhos Mammalian Transfection Kit, allows the highly efficient transfection of cultured neurons with low toxicity. The key features of this method are a carefully produced, fine DNA-Ca2+-phosphate precipitate and subsequent dissolution of the precipitate with a short exposure to a slightly acidic medium. This protocol is compatible with a variety of plasmid constructs and allows the successful transfection of both mature and immature neurons. Its high efficiency allows even single autaptic neurons to be transfected for subsequent analyses. In addition to our CalPhos Mammalian Transfection Kit, we also offer a wide range of In-Fusion Cloning products that enable you to generate your transfection construct quickly, easily, and without subcloning steps.

Methods  

Full-length methods and materials are available from the author's original manuscript (Jiang and Chen 2006).

References  

Chen, G., Harata, N. C. & Tsien, R. W. Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. Proc. Natl. Acad. Sci. 101, 1063–1068 (2004).

Chen, W. G. et al. Upstream stimulatory factors are mediators of Ca2+-responsive transcription in neurons. J. Neurosci. 23, 2572–81 (2003).

Chen, Y. et al. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Cell 115, 37–48 (2003).

Craig, A. M. Transfecting Cultured Neurons. MIT Press, Cambridge, MA (1998).

Goetze, B., Grunewald, B., Baldassa, S. & Kiebler, M. Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J. Neurobiol. 60, 517–25 (2004).

Holz, R. W. et al. A Pleckstrin Homology Domain Specific for Phosphatidylinositol 4,5-Bisphosphate (PtdIns-4,5-P 2 ) and Fused to Green Fluorescent Protein Identifies Plasma Membrane PtdIns-4,5-P 2 as Being Important in Exocytosis. J. Biol. Chem. 275, 17878–17885 (2000). 

Jiang, M., Deng, L. & Chen, G. High Ca2+-phosphate transfection efficiency enables single neuron gene analysis. Gene Ther. 11, 1303-11 (2004).

Jiang, M. & Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat. Protoc. 1, 695–700 (2006).

Köhrmann, M. et al. Fast, convenient, and effective method to transiently transfect primary hippocampal neurons. J. Neurosci. Res. 58, 831–5 (1999).

Micheva, K. D., Buchanan, J., Holz, R. W. & Smith, S. J. Retrograde regulation of synaptic vesicle endocytosis and recycling. Nat. Neurosci. 6, 925–32 (2003).

Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–81 (2003).

Washbourne, P. & McAllister, A. K. Techniques for gene transfer into neurons. Curr. Opin. Neurobiol. 12, 566–73 (2002).

Watanabe, S. Y. et al. Calcium phosphate-mediated transfection of primary cultured brain neurons using GFP expression as a marker: application for single neuron electrophysiology. Neurosci. Res. 33, 71–8 (1999).

Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–36 (1996).

Related Products

Cat. # Product Size Price License Quantity Details
631312 CalPhos™ Mammalian Transfection Kit 700 Rxns EUR €414.00

The CalPhos Mammalian Transfection Kit is a complete calcium phosphate-based kit for the transfection of mammalian tissue culture cells. The kit contains reagents necessary to perform 100 transfections in 10 cm plates or 700 transfections (6-well plate format).

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Protocol for CalPhos calcium phosphate transfection reagent

Protocol for CalPhos calcium phosphate transfection reagent
Protocol for CalPhos calcium phosphate transfection reagent.

Back

631312: CalPhos Mammalian Transfection Kit

631312: CalPhos Mammalian Transfection Kit


Seamless cloning tips, tricks, and troubleshooting

In‑Fusion Cloning tips and FAQs

Learn more about In‑Fusion Cloning, including applications, tips, primer design, and vector and insert requirements.

Seamless cloning primer design

Useful tips to keep in mind when designing your seamless cloning projects.

Seamless cloning methods

Learn about Gibson Assembly, Type IIS restriction enzymes, and In-Fusion Cloning.

Improve seamless cloning accuracy

View data on how different seamless cloning mechanisms yield different results in cloning accuracy.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio Europe

Takara Bio Europe is a member of the Takara Bio Group, a leading life sciences company that is committed to improving the human condition through biotechnology. Through our Takara, Clontech, and Cellartis brands, our mission is to develop high-quality innovative tools and services to accelerate discovery.

ordersEU@takarabio.com
techEU@takarabio.com
+33 139 046 880

Takara Bio affiliates & distributors
  • Europe
  • China
  • India
  • Japan
  • Korea
  • United States and Canada
  • Affiliates & distributors, by country
Our brands
Support
  • Technical support
  • Careers
  • Shipping information
Facebook Twitter  LinkedIn

©2025 Takara Bio Inc. All Rights Reserved.

Region - Germany Privacy Policy Terms and conditions Terms of Use Cookie Management

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • Lab Essentials
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Special offers
  • Lab Essentials
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us