We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Citations
  • Cellartis MSC Xeno-Free Culture Medium
  • Cellartis Power Primary HEP Medium
  • Cellartis DEF-CS 500 Culture System
  • Cellartis Enhanced hiPS-HEP cells
  • Cellartis hPS cell-derived cardiomyocytes
  • Cellartis iPS Cell to Hepatocyte Differentiation System
  • GS1-R
  • 2i mES/iPSC medium
  • iMatrix-511
  • 3i mES/iPSC medium
  • NDiff 227
  • NDiff N2
  • RHB-A
  • STEM101
  • STEM121
  • STEM123
Home › Learning centers › Stem cell research › Citations › Cellartis DEF-CS 500 Culture System

Stem cell research

  • Overview
    • Stem cell research products
    • Stem cell media products
    • Hepatocyte products
    • iPS cell to hepatocyte differentiation overview
  • Protocols
    • Hepatocytes
      • Video protocols for hiPS-HEP v2 cells
      • Getting started with hepatocyte differentiation
    • Pluripotent stem cells
      • Single-cell cloning with DEF-CS 500 Culture System
      • Transferring iPSCs on MEFs to DEF-CS
      • Transferring iPSCs from other media to DEF-CS
      • Spin embryoid body formation
      • Reprogramming PBMCs
      • Reprogramming fibroblasts
    • Cardiomyocytes
      • Cardiomyocytes in FLIPR 384-well plate format
      • Cardiomyocytes on the Patchliner system
      • Cardiomyocytes on the Maestro MEA system
      • Cardiomyocytes on the MED64 MEA system
      • Cardiomyocytes on the CardioExcyte 96 system
      • Cardiomyocytes on the xCELLigence RTCA CardioECR system
  • Applications
  • Technical notes
    • Pluripotent stem cells
      • Using the DEF-CS system to culture human iPS cells
      • Comparison of the Cellartis DEF-CS system with other vendors' human iPS cell culture systems
      • Reprogramming PBMCs
      • Reprogramming fibroblasts
    • Gene editing in hiPS cells
      • Tagging an endogenous gene with AcGFP1 in hiPS cells
      • Tagging an endogenous gene with a myc tag in hiPS cells
      • Generating clonal hiPS cell lines deficient in CD81
      • Introducing a tyrosinemia-related SNP in hiPS cells
      • Inserting an expression cassette into the AAVS1 locus in hiPS cells
      • Editing hiPS cells using electroporation
      • Editing hiPS cells using gesicle technology
      • Single-cell cloning of hiPS cells
    • Organoids
      • Retinal organoid differentiation from iPSCs cultured in the Cellartis DEF-CS 500 Culture System
      • Liver organoid differentiation from iPSCs for prediction of drug-induced liver injury
      • Generation of embryonic organoids using NDiff 227 neural differentiation medium
    • Beta cells
      • Beta cells for disease modeling
    • Hepatocytes
      • hiPS-HEP cells for disease modeling
      • hiPS-HEP cells for drug metabolism studies
      • Power medium for long-term human primary hepatocyte culture
      • iPS cell to hepatocyte differentiation system
    • Cardiomyocytes
      • Making engineered heart tissue with cardiomyocytes
    • Neural stem cells
      • RHB-A neural stem cell medium
  • Posters
  • Webinars
    • Using hiPS gene editing to create a tyrosinemia disease model
  • Videos
    • Hepatocyte offerings
  • FAQs
    • Cellartis DEF-CS 500 Culture System FAQs
    • Cellartis enhanced hiPS-HEP FAQs
    • Cellartis iPS Cell to Hepatocyte Differentiation System FAQs
  • Citations
    • Cellartis MSC Xeno-Free Culture Medium
    • Cellartis Power Primary HEP Medium
    • Cellartis DEF-CS 500 Culture System
    • Cellartis Enhanced hiPS-HEP cells
    • Cellartis hPS cell-derived cardiomyocytes
    • Cellartis iPS Cell to Hepatocyte Differentiation System
    • GS1-R
    • 2i mES/iPSC medium
    • iMatrix-511
    • 3i mES/iPSC medium
    • NDiff 227
    • NDiff N2
    • RHB-A
    • STEM101
    • STEM121
    • STEM123
  • Selection guides
    • Stem cell antibody selection guide
    • Stem cell media product finder
    • Stem cell tools product finder
    • Hepatocyte product finder
New products
Need help?
Contact Sales

Cellartis DEF-CS 500 Culture System citation list

Pluripotent stem cellsTakara Bio has over 15 years of experience in expanding, passaging, and culturing human pluripotent stem cells under the Cellartis brand. The DEF-CS 500 system is a complete solution for the easy culturing of human pluripotent stem cells in a noncolony, 2D-monolayer format. Cells grown in this system maintain pluripotency and a normal karyotype while exhibiting robust and uniform growth. Single-cell passaging enables the ability to directly isolate and expand single clones, including cells that have undergone CRISPR/Cas9 gene editing.

Read below for a citation list of studies in which the DEF-CS 500 system was used in peer-reviewed basic, translational, preclinical, and biomedical research.


  • Asplund, A. et al. One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells. Stem Cell Rev. 12:90–104 (2016).

25 different human pluripotent stem cell lines were maintained with the DEF-CS system, and their pluripotency was confirmed. Karyotyping of the stem cells maintained using the DEF-CS system for up to 29 passages showed no genetic aberrations. These stem cell lines were then successfully differentiated into functional hepatocytes. 

  • Boreström, C. et al. Footprint-free human induced pluripotent stem cells from articular cartilage with redifferentiation capacity: a first step toward a clinical-grade cell source. Stem Cells Transl. Med. 3:433–47 (2014).

Chondrocyte-derived and fibroblast-derived iPSCs were maintained using the DEF-CS system in a monolayer before these cells were successfully differentiated down to the chondrogenic lineage. Pluripotency of iPSCs maintained in the DEF-CS system was confirmed with immunofluorescent staining and quantitative RT-PCR.

  • Boreström, C. et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int. 18:30356–9 (2018).

Human induced pluripotent stem cells were maintained, edited with CRISPR/Cas9, and clonally selected in the DEF-CS system. Following clonal expansion, the cells were differentiated using a 3D differentiation protocol to create kidney organoids.

  • Delsing, L. et al. Barrier properties and transcriptome expression in human iPSC-derived models of the blood-brain barrier. Stem Cells 36(12):1816–1827 (2018). 

Human induced pluripotent stem cells were maintained in the DEF-CS system prior to differentiation into endothelial cells.

  • Funa, N. et al. B-catenin regulates primitive streak induction through collaborative interactions with SMAD2/SMAD3 and OCT4. Cell Stem Cell. 16(6):638–652 (2015).

Human embryonic stem cells were grown in DEF-CS medium prior to differentiation in order to study how β-catenin regulates differentiation. 

  • Gao, X. et al. A rapid and highly efficient method for the isolation, purification, and passaging of human induced pluripotent stem cells. Cell Reprogram. 20(5):282–288 (2018). 

Human induced pluripotent stem cells derived from PBMCs that were reprogrammed were single-cell passaged and expanded in DEF-CS medium. Pluripotency and genetic integrity of the hiPSCs were confirmed following single-cell passaging and expansion. 

  • Gao, X. et al. Generation of nine induced pluripotent stem cell lines as an ethnic diversity panel. Stem Cell Res. 31:193–196 (2018).

Human induced pluripotent stem cells were maintained, passaged as single cells, and expanded in the DEF-CS system. The resulting cell lines showed normal karyotype, expressed pluripotency markers, and were able to differentiate into the three germ layers.

  • Ghosheh, N. et al. Comparative transcriptomics of hepatic differentiation of human pluripotent stem cells and adult human liver tissue. Physiol Genomics. 49(8):430–446 (2017).

Human pluripotent stem cells were maintained and passaged in the DEF-CS system prior to differentiation into hepatocytes. Transcriptomics were used to monitor the proress of in vitro hepatic differentiation of hPSCs at the following developmental stages: definitive endoderm, hepatoblast, early hPSC-HEP, and mature hPSC-HEP.

  • Ghosheh, N. et al. Highly synchronized expression of lineage-specific genes during in vitro hepatic differentiation of human pluripotent stem cell lines. Stem Cells Int. 2016:8648356 (2016).

Human induced pluripotent stem cells were thawed, maintained, and passaged in the DEF-CS system prior to differentiation into hepatocytes.

  • Hanson, C. et al. Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro. Acta Ophthalmol. 91(2):127–130 (2013). 

Human embryonic stem cells were cultured in the DEF-CS system prior to transplantation onto a damaged human cornea. 

  • Kamiya, A. et al. An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Res. 32:17–24 (2018).

Human induced pluripotent stem cells were maintained in the DEF-CS system prior to differentiation into hepatic progenitor cells, which were used in cytotoxicity assays.

  • Kia, R. et al. MicroRNA-122: a novel hepatocyte-enriched in vitro marker of drug-induced cellular toxicity. Toxicol Sci. 144(1):173–185 (2015).

Human induced pluripotent stem cells were maintained in the DEF-CS system prior to differentiaton into hepatocyte-like cells.

  • Mamidi A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature. 564(7734):114–118 (2018).

Undifferentiated human embryonic stem cells were maintained in the DEF-CS system prior to differentiation into pancreatic progenitors including bipotent pancreatic progenitors. 

  • Nguyen, D. et al. Humanizing miniature hearts through 4-flow cannulation perfusion decellularization and recellularization. Sci Rep. 8(1):7458 (2018).

Human induced pluripotent stem cells were cultured in the DEF-CS system prior to differentiation into cardiac progenitor cells and recellularization experiments.

  • Norrman, K. et al. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level. Methods 59:59–70 (2013).

Human embryonic stem cells were maintained in the DEF-CS system before differentiation into definitive endoderm.

  • Osada, N. et al. Lysine-specific demethylase 1 inhibitors prevent teratoma development from human induced pluripotent stem cells. Oncotarget. 9(5):6450–6462 (2018).

Human induced pluripotent stem cells ere cultured in the DEF-CS system prior to gain-of-function and loss-of-function studies.

  • Pradip, A. et al. High content analysis of human pluripotent stem cell derived hepatocytes reveals drug induced steatosis and phospholipidosis. Stem Cells Int. 2016:2475631 (2016).

Human induced pluripotent stem cells were maintained in the DEF-CS system prior to differentiation into hepatocytes. hiPSC-derived hepatocytes were treated with various compounds known to cause hepatotoxicity through steatosis and phospholipidosis.

  • Rasmussen, C. et al. Collagen type I improves the differentiation of human embryonic stem cells towards definitive endoderm. PLoS One. 10(12):e0145389 (2015).

Human embryonic stem cells were cultured in the DEF-CS system, then exposed to 487 combinations of extracellular matrix proteins to screen for combinations that promote differentiation to definitive endoderm.

  • Ribeiro, D. et al. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters. PLoS One. 12(11):e0187665 (2017). 

Human induced pluripotent stem cells were cultured in the DEF-CS system prior to iPS clustering and pancreatic differentiation.

  • Säljö, K. et al. Comparison of the glycosphingolipids of human-induced pluripotent stem cells and human embryonic stem cells. Glycobiology. 27(4):291–305 (2017).

Human induced pluripotent stem cells were maintained in the DEF-CS system prior to differentiation into neuroepithelial cells.

  • Sivertsson, L.  et al. Hepatic differentiation and maturation of human embryonic stem cells cultured in a perfused three-dimensional bioreactor. Stem Cells Dev. 22(4):581–594 (2012).

Human embryonic stem cells (Y00025) were cultured in the DEF-CS system and differentiated into definitive endoderm cells. The cells were then transferred to a 3D bioreactor and further matured into hepatocyte-like cells.

  • Ulvestad, M. et al. Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells. Biochem Pharmacol. 86(5):691–702 (2013).

Human embryonic stem cells and pluripotent stem cells were maintained and expanded in the DEF-CS system prior to differentiation into hepatocytes. Following differentiation, the researchers characterized the expression and function of important CYP enzymes and transporter proteins in the differentiated cells. 

  • Valton, J. et al. Efficient strategies for TALEN-mediated genome editing in mammalian cell lines. Methods. 69(2):151–170 (2014). 

Human induced pluripotent stem cells were maintained in the DEF-CS system before and after transfection by DNA electroporation. 

  • Vizlin-Hodzic, D. et al. Early onset of inflammation during ontogeny of bipolar disorder: the NLRP2 inflammasome gene distinctly differentiates between patients and healthy controls in the transition between iPS cell and neural stem cell stages. Transl Psychiatry. 7(1):e1010 (2017).

Human induced pluripotent stem cells were maintained in the DEF-CS system prior to differentiation into neural stem cells.

  • Zandén, C. et al. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds. Nanomedicine. 10(5):949–958 (2014).

Human embryonic stem cells (Y00025) were cultured in the DEF-CS system and plated on coverslips that were coated with various plasma surface modified polyurethane scaffolds. The researchers wanted to investigate the effects of the different modifications on stem cell behavior. 


Cellartis DEF-CS 500 Culture System FAQs

FAQs about the Cellartis DEF-CS 500 Culture System.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us