We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Stem cell research
  • Overview
  • Protocols
  • Applications
  • Technical notes
  • Posters
  • Webinars
  • Videos
  • FAQs
  • Citations
  • Selection guides
Home › Learning centers › Stem cell research › Applications

Stem cell research

  • Overview
    • Stem cell research products
    • Stem cell media products
    • Hepatocyte products
    • iPS cell to hepatocyte differentiation overview
  • Protocols
    • Hepatocytes
      • Video protocols for hiPS-HEP v2 cells
      • Getting started with hepatocyte differentiation
    • Pluripotent stem cells
      • Single-cell cloning with DEF-CS 500 Culture System
      • Transferring iPSCs on MEFs to DEF-CS
      • Transferring iPSCs from other media to DEF-CS
      • Spin embryoid body formation
      • Reprogramming PBMCs
      • Reprogramming fibroblasts
    • Cardiomyocytes
      • Cardiomyocytes in FLIPR 384-well plate format
      • Cardiomyocytes on the Patchliner system
      • Cardiomyocytes on the Maestro MEA system
      • Cardiomyocytes on the MED64 MEA system
      • Cardiomyocytes on the CardioExcyte 96 system
      • Cardiomyocytes on the xCELLigence RTCA CardioECR system
  • Applications
  • Technical notes
    • Pluripotent stem cells
      • Using the DEF-CS system to culture human iPS cells
      • Comparison of the Cellartis DEF-CS system with other vendors' human iPS cell culture systems
      • Reprogramming PBMCs
      • Reprogramming fibroblasts
    • Gene editing in hiPS cells
      • Tagging an endogenous gene with AcGFP1 in hiPS cells
      • Tagging an endogenous gene with a myc tag in hiPS cells
      • Generating clonal hiPS cell lines deficient in CD81
      • Introducing a tyrosinemia-related SNP in hiPS cells
      • Inserting an expression cassette into the AAVS1 locus in hiPS cells
      • Editing hiPS cells using electroporation
      • Editing hiPS cells using gesicle technology
      • Single-cell cloning of hiPS cells
    • Organoids
      • Retinal organoid differentiation from iPSCs cultured in the Cellartis DEF-CS 500 Culture System
      • Liver organoid differentiation from iPSCs for prediction of drug-induced liver injury
      • Generation of embryonic organoids using NDiff 227 neural differentiation medium
    • Beta cells
      • Beta cells for disease modeling
    • Hepatocytes
      • hiPS-HEP cells for disease modeling
      • hiPS-HEP cells for drug metabolism studies
      • Power medium for long-term human primary hepatocyte culture
      • iPS cell to hepatocyte differentiation system
    • Cardiomyocytes
      • Making engineered heart tissue with cardiomyocytes
    • Neural stem cells
      • RHB-A neural stem cell medium
  • Posters
  • Webinars
    • Using hiPS gene editing to create a tyrosinemia disease model
  • Videos
    • Hepatocyte offerings
  • FAQs
    • Cellartis DEF-CS 500 Culture System FAQs
    • Cellartis enhanced hiPS-HEP FAQs
    • Cellartis iPS Cell to Hepatocyte Differentiation System FAQs
  • Citations
    • Cellartis MSC Xeno-Free Culture Medium
    • Cellartis Power Primary HEP Medium
    • Cellartis DEF-CS 500 Culture System
    • Cellartis Enhanced hiPS-HEP cells
    • Cellartis hPS cell-derived cardiomyocytes
    • Cellartis iPS Cell to Hepatocyte Differentiation System
    • GS1-R
    • 2i mES/iPSC medium
    • iMatrix-511
    • 3i mES/iPSC medium
    • NDiff 227
    • NDiff N2
    • RHB-A
    • STEM101
    • STEM121
    • STEM123
  • Selection guides
    • Stem cell antibody selection guide
    • Stem cell media product finder
    • Stem cell tools product finder
    • Hepatocyte product finder
New products
Need help?
Contact Sales

Stem cell applications

Obtaining accurate predictions of intrinsic clearance in drug development

Download application data provided by AstraZeneca on Cellartis Power Primary HEP Medium for intrinsic clearance studies »

A common goal in the pharmaceutical industry is to develop new drugs that are metabolized slowly in order to extend the half-life of a drug. Doing so would minimize the number of doses required, and this would have a profound effect on the quality of life for patients suffering from chronic illnesses (la Hultman et al. 2016). However, these types of drugs, known as low-clearance compounds, are failing in the clinic due to difficulties in accurately determining how quickly they are cleared from the body. Often, the clearance of a low-clearance compound is overestimated, resulting in significant underestimation of the clinical half-life, which may not be compatible with the intended use of the drug. Therefore, the ability to accurately measure the clearance of a drug is essential for drug development and safe, accurate dosing.

Pharmacokinetics is the study of how a drug moves through the body and is important for understanding how quickly a drug is cleared from the body. It consists of four processes: absorption, distribution, metabolism, and excretion. Drug metabolism occurs primarily in the liver and is the main mechanism by which drugs are eliminated from the body. The loss of a drug as it passes through the liver is known as hepatic clearance—the key factor in determining how long a drug stays in the body, and consequently, the duration of its effects (Zhang et al. 2012).

Pharmacokinetics: absorption, distribution, metabolism, and excretion

Image adapted from "Digestive system without labels" by user: LadyofHats / Wikimedia Commons / Public Domain

Hepatic clearance is influenced by two factors: the rate of hepatic blood flow (which reflects the delivery of a drug to the liver) and how efficiently a drug is removed from the blood. The hepatic extraction ratio is an indication of the efficiency of drug removal from the blood (Clarks 2013). The extraction ratio is dependent on 1) the fraction of the drug that is freely available for interaction with hepatic enzymes and 2) the ability of hepatic enzymes to metabolize the freely available drug, a property known as intrinsic clearance (CLint). Drugs that have a high extraction ratio are known as high-clearance drugs and are rapidly eliminated from the body. In contrast, drugs with a low extraction ratio are known as low-clearance drugs and are slowly eliminated from the body due to the liver's low intrinsic ability to metabolize and excrete these drugs.

Hepatic clearance

Challenges of predicting intrinsic clearance for low-clearance drugs

Predicting the in vivo clearance of a drug based on data from in vitro models is challenging. This prediction is even harder for low-clearance drugs due to the limitations of existing in vitro systems and assays, such as lack of sensitivity to detect low CLint values. For example, the most common method for determining the CLint value is the suspension hepatocyte clearance assay. Suspension hepatocytes rapidly lose enzyme activity and viability after four hours, so the incubation time in a clearance assay is restricted to a maximum of four hours. Low-clearance drugs require long incubations, and therefore, the suspension hepatic clearance assay is not suitable for determining the CLint value for low-clearance drugs.

Several novel approaches have been developed for determining the CLint value for low-clearance drugs. For example, with the relay method, suspension hepatocytes are incubated with the drug for four hours, and then the drug supernatant is transferred to freshly thawed suspension hepatocytes. This is repeated five times and allows the drug to be exposed to hepatic enzymes for 20 hours. Additionally, cell lines and culture systems that are able to maintain hepatic enzyme activity for long periods of time have been developed and evaluated for low-clearance studies. These include monolayer cultures of plated cryopreserved primary hepatocytes or HepaRG cells, coculture hepatocyte systems such as HepatoPac or HuREL, and primary hepatocytes cultured in 3D spheroids (Di and Obach 2015). However, these approaches can be complicated, time consuming, and expensive, or can have poor predictability of in vivo clearance. Therefore, there is still a need for a user-friendly, reliable model system for the prediction of intrinsic clearance for low-clearance drugs.

Cellartis Power Primary HEP Medium for prediction of intrinsic clearance

We developed Cellartis Power Primary HEP Medium, a complete medium that maintains healthy, functional human primary hepatocytes for up to four weeks in conventional 2D cultures—without the need for overlays or sandwich cultures. Cells have normal morphology and stable albumin secretion, as well as stable CYP activities and inducible CYP expression. More importantly, human primary hepatocytes can be cultured in Cellartis Power Primary HEP Medium for up to 10 days without medium changes. This makes it possible to more accurately study and measure intrinsic clearance of low-clearance compounds without sequential medium changes or complicated cell culture systems. More accurate in vitro systems allow more accurate in vivo predictions, which are critical for determining drug safety and efficacy in patients and advancing low-clearance compounds in the clinic.

Application data from AstraZeneca

In collaboration with AstraZeneca, we conducted an experiment to evaluate whether primary hepatocytes cultured in Cellartis Power Primary HEP Medium can be used as a cell model to predict intrinsic clearance. For this first experiment, we used the drug quinidine, a compound with known low-intrinsic clearance. The drug is mainly metabolized by CYP3A4. In this study, the quinidine concentration was analyzed at times zero; 1, 3, and 5 hours; and 1, 2, 3, 5, 7, 9, and 10 days of incubation. The predicted in vivo CLint value based on the calculated in vitro CLint value was in very good agreement (within a twofold difference) with the observed in vivo CLint value.

 

Sign up to download the application data


References

Clarks, C. W. Hepatic Drug Clearance. Tulane University School of Medicine, Medical Pharmacology, TMedWeb. At <http://tmedweb.tulane.edu/pharmwiki/doku.php/hepatic_drug_clearance>

la Hultman et al. Use of HµREL human coculture system for prediction of intrinsic clearance and metabolite formation for slowly metabolized compounds. Mol. Pharm. 13, 2796–2807 (2016).

Di, L. and Obach, R. S. Addressing the challenges of low clearance in drug research. AAPS J. 17, 352–7 (2015).

Zhang, D. et al. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. APSB 2, 549–561 (2012).

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us