We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to FAQ
  • Primer design
  • Optimization
  • Troubleshooting
  • Applications and conditions
  • Shipping, storage, and handling
DNA polymerase brochure Download: PCR enzyme brochure
Home › Learning centers › PCR › FAQ › Applications and conditions

PCR

  • Citations
    • PrimeSTAR HS
    • EmeraldAmp MAX
    • Terra PCR Direct
    • EmeraldAmp GT
    • Takara Ex Taq
    • PrimeSTAR Max
    • PrimeSTAR GXL
    • Takara LA Taq
    • SpeedSTAR HS
    • Takara Taq and Taq HS
    • Titanium Taq
  • PCR selection guide
  • PCR enzyme brochure
  • Technical notes
    • Rapid, high-performance multiplex PCR
    • EmeraldAmp outperforms MyTaq Red mix
    • Fast and accurate PCR
    • Methylation studies
    • Hot-start PCR
    • Long-range PCR with LA Taq
    • Direct PCR from human nail
    • Direct PCR from meat samples
    • Megaprimer PCR with PrimeSTAR GXL
    • Amplifying GC-rich templates
    • Titanium Taq for high-throughput genotyping
    • Colony PCR in under an hour
    • High-throughput endpoint PCR
    • Direct PCR from blood
    • PrimeSTAR GXL for targeted sequencing
    • Detecting somatic mosaicism using massively parallel sequencing
  • FAQ
    • Primer design
    • Optimization
    • Troubleshooting
    • Applications and conditions
    • Shipping, storage, and handling
  • Go green with lyophilized enzymes
New products
Need help?
Contact Sales
DNA polymerase brochure Download: PCR enzyme brochure

Working with specific applications and conditions

Using the FAQs below, learn how to perform successful PCR and choose polymerases that work best for your specific applications.

In addition to our high-performing DNA polymerases, we offer many PCR-related products such as dNTPs and anti-Taq antibodies for hot-start reactions.

Find high-quality solutions for applications downstream of your PCR:

  • Looking for quick and dependable purification of your amplicon? Easily clean up your PCR product, either from an agarose gel or directly from the reaction.
  • Need agarose gel powders, DNA markers, gel electrophoresis instruments, or accessories? Use our electrophoresis products for your DNA separation needs.
  • Plan on using your amplicon for cloning? Seamlessly insert your PCR product into any vector, at any site of linearization using ligation-independent cloning.

General PCR application information

What factors are critical for multiplex PCR?

All primer pairs used in multiplex PCR should have similar priming efficiencies for their target DNA. This can be achieved by using primers with nearly identical optimum annealing temperatures.

When designing primers, pay special attention the following parameters:

  • Homology with the target nucleic acid sequence
  • Length
  • GC content
  • Concentration
  • Primer homology (primers should not have homology either internally or with one another, especially at the 3' ends)

What is nested PCR?

Nested PCR is a method that involves re-amplification to improve PCR results. Nested PCR involves designing a new forward-nested (FN) or reverse-nested (RN) primer that is internal to the original primer and can pair with the original partner primer. A very small amount of the primary PCR product is used as a template for PCR with nested primers.

Nested PCR frequently leads to improved yield of the desired PCR product by:

  • Eliminating extra bands that may have been present in the initial PCR
  • Producing a robust band that may have been weak or invisible in the initial PCR

It is important to note that only a very small amount of the primary product should be used in nested PCR because this template has very low sequence complexity. To start, the primary PCR product can be diluted 1:100, and 1 µl can be used as the template for nested PCR. Also, you may need to reduce the number of cycles to 25–30. The optimal conditions for nested PCR should be determined empirically.

What is touchdown PCR (TD-PCR) and when would I need to use it?

During the PCR denaturation step, all DNA molecules will become single stranded. When the temperature decreases for annealing, three types of duplexes can be formed:

  • Homoduplexes—annealing of complementary strands
  • Heteroduplexes—cross-hybridization of homologous sequences that may have partial homology
  • Duplexes between primers and template

To achieve higher specificity, heteroduplex formation should be minimized by increasing stringency (i.e., increasing the temperature) during the initial PCR cycles. Touchdown PCR increases specificity by using reaction conditions that gradually reduce the annealing temperature. The initial annealing temperature is set to several degrees above the estimated Tm of the primers. In subsequent cycles, the annealing temperature is slowly decreased until it reaches the calculated annealing temperature of the primers (Don 1991). By using a higher annealing temperature in the initial PCR cycles, touchdown PCR favors accumulation of amplicons for sequences with the highest primer-template complementarity, thereby enriching for the most specific amplicons. Transitioning to a lower temperature during subsequent cycles reduces stringency, improving priming conditions with the already enriched, desired template. We recommend performing an initial 5–10 cycles with the higher annealing temperature, and then gradually decreasing the temperature until the optimal annealing temperature, or "touchdown temperature," is reached. For example, if the Tm of your primers is 68°C, the recommended TD-PCR conditions for the annealing temperature are:

  • 5 cycles at 72°C, then
  • 5 cycles at 70°C, then
  • >25 cycles at 68°C

References

Don, R. H., et al. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucl Acids Res. 19(14):4008 (1991).

How can I clone a blunt-end PCR product into a TA-cloning vector?

If a PCR product is amplified with a high-fidelity polymerase that generates blunt ends, you can perform A-tailing using Taq polymerase. A brief protocol for adding 3' A-overhangs to PCR products is provided below.

  1. Purify the PCR product. Before adding overhangs, it is very important to remove all of the polymerase in the reaction by purifying the PCR product using a PCR purification kit or by phenol extraction and DNA precipitation. This step is critical, since the proofreading activity of any residual DNA polymerase would degrade the A overhangs, thus recreating blunt ends.
  2. Prepare the Taq DNA polymerase reaction mix: 
  Final concentration Volume (µl)
Purified PCR product    0.15–1.5 pmol    Varies*
dATP (10 mM)    0.2 mM    1
PCR buffer with Mg2+ (10X)    1X (1.5 mM MgCl2)    5
Taq DNA polymerase (5 U/µl)    1 U    0.2
ddH2O       to 50 µl


*The A-addition reaction works best when a specific amount of the PCR product is used. The recommended amount is 10–100 ng per 100 bp of the PCR product. This corresponds to 0.15–1.5 pmol of PCR product (see table below).
 

PCR product size   Amount of PCR product to use
100 bp   10–100 ng
250 bp   25–250 ng
1,000 bp   100–1,000 ng

3. Incubate for 20 min at 72°C.

Proceed to TA cloning. For optimal ligation efficiency, it is best to use fresh PCR products, since 3' A-overhangs will gradually be lost during storage.

Which polymerases generate blunt ends versus A-overhangs?

  • Enzymes in the PrimeSTAR series
    These enzymes exhibit substantial 3'→5' exonuclease activity and primarily generate amplification products with blunt ends. Therefore, we recommend using the Mighty Cloning Reagent Set (Blunt End) for blunt-end cloning.
  • Taq and Terra enzymes
    Takara Taq, Takara Ex Taq, Takara LA Taq, SpeedSTAR HS, EmeraldAmp, SapphireAmp Fast, and Terra PCR DNA polymerases primarily yield amplification products containing 3'-dA overhangs that can be directly used for TA-cloning. Blunt-end cloning is also possible using the Mighty Cloning Reagent Set (Blunt End).
  • All Takara Bio DNA polymerases
    The fragment terminal structure after amplification with a particular polymerase is indicated in the table below. Some polymerases generate a mixture of blunt-end and A-overhang products; other polymerases generate only blunt-end or A-overhang products.

Polymerase A-overhang Blunt end
Takara Taq DNA polymerases
Yes
 
Takara Ex Taq DNA polymerases
Yes
Yes
Takara LA Taq DNA polymerases
Yes
Yes
Titanium Taq DNA Polymerase
Yes
 
Advantage 2 Polymerase Mix
Yes
Yes
Advantage GC 2 Polymerase Mix
Yes
Yes
Advantage HF 2 Polymerase Mix
Yes
Yes
EmeraldAmp GT PCR Master Mix
Yes
 
EmeraldAmp MAX HS PCR Master Mix
Yes
Yes
SapphireAmp Fast PCR Master Mix
Yes
Yes
High Yield PCR EcoDry Premix
Yes
 
High Fidelity PCR EcoDry Premix
Yes
Yes
Terra PCR Direct Polymerase Mix
Yes
 
SpeedSTAR HS DNA Polymerase
Yes
Yes
PrimeSTAR HS DNA Polymerase  
Yes
PrimeSTAR GXL DNA Polymerase  
Yes
PrimeSTAR Max DNA Polymerase  
Yes
CloneAmp HiFi PCR Premix  
Yes
SeqAmp DNA Polymerase  
Yes
TaKaRa Z-Taq DNA Polymerase
Yes
Yes
e2TAK DNA Polymerase  
Yes
PerfectShot Ex Taq DNA Polymerase
Yes
Yes

What is meant by polymerase fidelity? What applications require a high-fidelity polymerase?

The fidelity of a DNA polymerase refers to its ability to accurately replicate a template, or to add the correct nucleotides starting at the 3' end of the primer. The rate of base misincorporation is known as the error rate. PCR polymerases with proofreading activity possess 3'→5' exonuclease activity that can excise incorrectly incorporated nucleotides and replace them with the correct nucleotides.

High-fidelity polymerases are recommended for gene cloning, protein expression, structure-function studies of proteins, cDNA library construction, and next-generation sequencing.

How can I compare error rates of different high-fidelity polymerases?

Error rates reported by vendors for polymerases cannot always be directly compared, as different methods are used to measure fidelity. These methods include:

  1. Blue-white screening
    This approach is based on phenotypic changes and is widely used since it is fast, relatively simple, and cost effective. The original method for blue-white screening, known as the Kunkel method (Kunkel and Tindall 1987), is based on α-complementation of the lacZα gene that restores β-galactosidase enzyme activity and allows production of a blue color. With this method, colonies derived from lacZα PCR products containing single-nucleotide errors or frameshift mutations typically have a white color, while clones derived from error-free amplicons generate blue colonies.
  2. Sequencing approach
    This approach utilizes Sanger sequencing of individual colonies after PCR. The blue-white screening approach can quickly measure polymerase fidelity, however it is not as accurate as the sequencing approach. The blue-white method will not detect silent mutations, single-nucleotide substitutions that do not affect translation. The sequencing method can detect all mutations, and thus is more accurate.

References

Kunkel, T. A. and Tindall, K. R., Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27, 6008–6013 (1987). 

PrimeSTAR Max and PrimeSTAR GXL DNA polymerases have very high fidelity; how was fidelity measured for these enzymes?

The fidelities of the PrimeSTAR polymerases were measured by Sanger sequencing of individual colonies after PCR, as described below:

  • Ten arbitrarily selected GC-rich regions of Thermus thermophilus HB8 genomic DNA were amplified.
  • PCR products were cloned into a plasmid vector.
  • Multiple clones were selected for each respective amplification product, and the PCR insert was sequenced.

PrimeSTAR Max DNA Polymerase has a fidelity 29X that of Taq polymerase, whereas PrimeSTAR GXL DNA Polymerase has a fidelity 6.5X that of Taq polymerase.

What precautions should be taken when using inosine-containing primers?

TaKaRa Taq DNA Polymerase and TaKaRa Taq DNA Polymerase Hot Start Version are compatible with inosine-containing primers.

Inosine-containing primers should not be used with PCR enzymes that have 3'→5' exonuclease activity (e.g., PrimeSTAR HS DNA Polymerase, PrimeSTAR Max DNA Polymerase, PrimeSTAR GXL DNA Polymerase, TaKaRa Ex Taq DNA Polymerase, or Takara LA Taq DNA polymerases), nor with Terra PCR Direct polymerase. When using one of the compatible Takara Taq PCR enzymes for degenerate PCR, we recommend using a mixture of degenerate primers with A, T, G, or C at the desired position(s) rather than inosine-containing primers.

Polymerases for specific applications

Highest fidelity

PrimeSTAR polymerases provide better fidelity than Pfu DNA polymerase, which is widely considered to be a high-fidelity enzyme. PrimeSTAR Max DNA Polymerase has the highest fidelity; when this enzyme was used to amplify the entire pUC119 plasmid, sequence analysis detected only four mutations out of 370,656 total bases sequenced (an error rate of 0.0010%). In addition, compared to other enzymes, PrimeSTAR Max DNA Polymerase replicates repeat sequences with markedly better fidelity and exhibits a lower rate of template exchange (formation of chimeric molecules) with analogous sequences.

GC-rich target sequences

Consider the following enzymes:

  1. First choice: PrimeSTAR GXL DNA Polymerase is the most effective enzyme for GC-rich templates, such as bacterial genomic DNA. It facilitates high-fidelity amplifications with very few errors. PrimeSTAR GXL DNA Polymerase has been used successfully to amplify a region with ~70% GC content in a standard reaction using the buffer provided with the enzyme.
  2. Second choice: Advantage GC 2 Polymerase Mix is recommended for complex templates containing up to 90% GC content. This polymerase is suitable for fragments up to 6 kb. Advantage GC 2 polymerase used with DMSO and GC-Melt reagent allows amplification of virtually all GC-rich sequences.
  3. Third choice: for GC-rich targets that have rigid structures and are difficult to amplify with PrimeSTAR GXL DNA Polymerase, use TaKaRa LA Taq DNA Polymerase with GC Buffer. Try GC Buffer I first; this buffer facilitates the amplification of long products. GC Buffer II is effective for templates with complex higher-order structures, although this buffer is more effective for amplification of shorter products.

Long-range PCR

PrimeSTAR GXL DNA Polymerase is recommended when both length (>6 kb) and fidelity are factors. Amplification of 30-kb products from human genomic DNA templates has been accomplished with this enzyme. Takara LA Taq DNA polymerase can also be used for long-range PCR; this enzyme is recommended when length and robust amplification are priorities.

Fast PCR

We have several PCR enzymes that can be used for fast reactions.

  • Speed and fidelity—PrimeSTAR Max DNA Polymerase contains a proprietary elongation factor and exhibits excellent priming efficiency, allowing extension times as short as 5 sec/kb and an annealing time of only 5 sec. This enzyme is recommended for cloning and expression studies.
  • High-throughput applications and fast colony PCR—SapphireAmp Fast PCR Master Mix is an economical choice for high-throughput projects. This 2X enzyme premix includes a high-speed polymerase, optimized buffer, dNTP mixture, gel loading dye (blue), and a density reagent. Since it requires an extension time of only 10 sec/kb, colony PCR reactions can be completed in <1 hr for inserts up to 1 kb.
  • SNP genotyping and fast long-range PCR—SpeedSTAR HS DNA Polymerase is highly efficient and can reliably perform PCR amplifications with extension times between 10 and 20 sec/kb.

AT-rich target sequences

TaKaRa Ex Taq DNA Polymerase and PrimeSTAR GXL DNA Polymerase are effective for amplifying AT-rich target sequences, such as genomic DNA containing introns or AT-rich mitochondrial DNA. We recommend PrimeSTAR GXL DNA Polymerase for amplifying AT-rich templates with high accuracy. In contrast to other PCR enzymes, PrimeSTAR GXL polymerase can amplify targets containing >60% AT content using a standard PCR protocol and the reaction buffer provided.

Note: PrimeSTAR GXL DNA Polymerase cannot be used to amplify bisulfite-treated DNA or other uracil-containing templates. For this application, try TaKaRa EpiTaq HS (for bisulfite-treated DNA).

Bisulfite-treated DNA

Several choices are available:

  • TaKaRa EpiTaq HS (for bisulfite-treated DNA) is optimized for PCR amplification using bisulfite-treated DNA templates that contain uracil. This enzyme includes a hot-start antibody and is designed for use during methylation analysis, including COBRA and bisulfite-sequencing analyses.
  • The EpiScope MSP Kit is designed specifically for methylation-specific PCR (MSP) assays.
  • TaKaRa Taq DNA Polymerase and TaKaRa Taq DNA Polymerase Hot Start Version, both of which lack 3'→5' exonuclease activity, may be used in some instances.

PCR-inhibiting agents

TaKaRa Ex Taq DNA Polymerase is exceptionally robust, even in the presence of PCR inhibitors such as polyphenols found in crude DNA extracts from plant tissue. PrimeSTAR GXL DNA Polymerase is recommended when high fidelity is also required. Although PrimeSTAR GXL polymerase generally produces satisfactory results with the standard protocol, doubling the enzyme concentration may improve results if very high concentrations of inhibitors are present.

Alternatively, Terra PCR Direct Polymerase Mix allows direct amplification from crude samples that may contain high levels of PCR inhibitors. Terra PCR Direct polymerase can efficiently amplify a wide range of targets, including GC- and AT-rich targets. This enzyme can also be used for direct PCR from blood samples.

In cases where amplification products cannot be produced with these enzymes, it may be necessary to purify the template DNA.

Paraffin/FFPE sections

The Terra PCR Direct FFPE Kit can be used for crude DNA preparation and direct PCR amplification from paraffin-embedded tissue sections.

If it is necessary to extract DNA from paraffin-embedded tissue first, TaKaRa DEXPAT Easy and TaKaRa DEXPAT Reagent enable quick, efficient DNA preparation, even from slides or samples that have been stored for years.

Gel electrophoresis after PCR (e.g., genotyping screens)

We recommend EmeraldAmp GT PCR Master Mix. This PCR master mix contains a green gel loading dye and density reagent, making it easy to prepare PCR reaction mixtures that can be directly loaded on an agarose gel for electrophoresis after PCR. EmeraldAmp GT PCR Master Mix can amplify targets up to 10 kb in length, including targets that are GC- or AT-rich. Additionally, PCR products generated with EmeraldAmp GT PCR Master Mix can be used directly for restriction enzyme digestion, sequencing, or TA-cloning without purification.

Colony PCR

We recommend SapphireAmp Fast PCR Master Mix for colony PCR. This enzyme premix can tolerate a substantial presence of bacterial nucleic acids. Tracking dye and density reagent are included in the master mix, allowing the PCR reaction products to be loaded directly on an agarose gel for electrophoresis.

Highest sensitivity

For the highest sensitivity, we recommend Titanium Taq DNA Polymerase or TaKaRa Ex Taq DNA Polymerase. Both polymerases have been used successfully for highly sensitive genotyping applications.

Direct amplification from tissue

We recommend Terra PCR Direct Polymerase Mix for amplifying targets from crude extracts or directly from tissues. The recommended amounts of various tissues that should be used for direct PCR are listed below:

  • Treated blood: ≤5 µl
  • Mouse tail: ≤1 mm
  • Mouse ear: ≤1.5 mm2
  • Plant leaf: ≤1.2 mm (diameter)
  • Paraffin-embedded tissue section: ≤1–1.5 cm2

Multiplex PCR

We recommend TaKaRa Taq DNA Polymerase or Titanium Taq DNA Polymerase for multiplex PCR. View our tech note for more information about using Titanium Taq DNA Polymerase in multiplex PCR for high-throughput genotyping.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us