We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Lentivirus
  • Webinars
  • Customizable SARS-CoV-2 pseudovirus
  • Lenti-X FAQs
  • Lentiviral workflow
  • Lentiviral products guide
  • Lentivirus biosafety
  • Lentiviral tips
  • Lentiviral vectors
  • Lenti-X packaging
  • High-throughput lentivirus production
  • Lenti-X Concentrator
  • Lentiviral titration
  • Lenti-X GoStix Plus video protocols
  • Lenti-X GoStix Plus FAQs
  • Rapid lentivirus titration by p24 ELISA
  • Lentiviral particles
  • Lentiviral particles—fluorescent
  • Lentiviral particles FAQs
Selection guides Virus kits: product finder tool
Tools for recombinant lentivirus production and evaluation Lentivirus product catalog
Home › Learning centers › Gene function › Viral transduction › Lentivirus › Lenti-X packaging

Viral transduction

  • Recombinant virus comparison
  • Product finder
  • Transduction posters
  • Lentivirus
    • Webinars
      • Webinar: Cellular reprogramming of cancer cells for immunotherapy
      • Lentiviral particles webinar
    • Customizable SARS-CoV-2 pseudovirus
    • Lenti-X FAQs
    • Lentiviral workflow
    • Lentiviral products guide
    • Lentivirus biosafety
    • Lentiviral tips
    • Lentiviral vectors
    • Lenti-X packaging
    • High-throughput lentivirus production
    • Lenti-X Concentrator
    • Lentiviral titration
    • Lenti-X GoStix Plus video protocols
    • Lenti-X GoStix Plus FAQs
    • Rapid lentivirus titration by p24 ELISA
    • Lentiviral particles
    • Lentiviral particles—fluorescent
    • Lentiviral particles FAQs
  • Retrovirus
    • Retroviral products
    • Retro-X FAQs
    • Retro-X packaging
    • Retro-X Concentrator
  • Adeno-associated virus
    • AAV workflow
    • AAV products
    • AAV FAQs
    • AAV tech notes
      • Customer data: Purified AAV9 delivery (mouse brain)
      • Customer data: Purified AAV9 delivery (songbird brain)
      • Serotype-independent AAV vector purification
      • Customer data: Purified AAV2 delivery (mouse brain)
    • AAV videos
      • AAV2 purification video
      • AAVpro "All Serotypes" protocols
    • AAVpro Concentrator overview
  • Adenovirus
    • Adenoviral FAQs
    • Adenoviral products
    • Fastest, easiest adenoviral system ever
    • Tet-inducible adenovirus
    • Adenovirus purification kits
    • Adenovirus purification mega-scale
    • Adenovirus rapid titer
    • Adenoviral titration
New products
Need help?
Contact Sales
Selection guides Virus kits: product finder tool
Tools for recombinant lentivirus production and evaluation Lentivirus product catalog

Fourth-generation lentiviral packaging overview

Lenti-X fourth-generation packaging systems are optimized for viral yield, ease of use, and safety. Use these systems to produce ultra-high titers of lentivirus. There are two pseudotype (envelope protein) options to choose from, depending on your desired tropism:

  • VSV-G lentiviral packaging—produces VSV-G pseudotyped lentivirus, which readily infects virtually all types of cells. A nonintegrating version is also available.
  • Ecotropic lentiviral packaging—produces lentivirus pseudotyped with the MLV ecotropic envelope glycoprotein, which limits transduction to mouse and rat cells.

    Watch the video to find out how our fourth-generation packaging system can generate such high titers. 

lentiviral titer High lentiviral titer

Our Lenti-X packaging systems generate lentiviral titers that far exceed most other commercially available packaging systems—you can expect titers of 107–108 infectious units (IFU) per ml, 25 times what other popular systems generate.

How are such high titers achieved?

  • Optimized composition—Lentiviral packaging and nonviral components are provided as a proprietary suite of five vectors (Figure 1), premixed in the ideal ratio to maximize virus production
  • Tetracycline transactivation—High-level expression of packaging components using Tet-system promoters
  • Optimized transfection—Xfect Transfection Reagent consistently results in >95% transduction efficiency for HEK 293T cells, allowing high expression of packaging components
  • Specialized Lenti-X 293T cell line—Highly transfectable cells selected to provide titers as high as 108 IFU/ml

Lenti-X HTX Packaging System vectors

Figure 1. Takara Bio's Lenti-X HTX Packaging Systems consist of five separate vectors (left). High expression of essential viral components are driven by the Tet-Off and Tat transactivators. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant viral particle. Other, third-generation systems (right) do not contain separate gag and pol sequences. Not all vector elements are shown.

How much packaged lentivirus can be obtained from a single Lenti-X packaging reaction?

A single Lenti-X HTX packaging reaction (now replaced by Lenti-X Single Shots) generates 10 ml of unconcentrated lentiviral supernatant at 107–108 IFU/ml. Leading competitor systems produce far less (Figure 2).

Lenti-X packaging versus competitor

Figure 2. Lenti-X (Panel A) and a competitor's packaging system (Panel B) were each used with Lenti-X 293T cells to generate lentiviral vectors that express ZsGreen1. The supernatant was used for transduction of HeLa cells. 10 µl of the Lenti-X packaging reaction was able to transduce the majority of the cells, whereas 10 µl of the competitor's supernatant transduced only a small percentage of cells.

The maximum titer obtained by our scientists is ~5 x 108 IFU/ml (unconcentrated supernatant), as determined by analysis of ZsGreen1 expression from a pLVX backbone by flow cytometry. The cPPT/CTS, RRE, and WPRE sequences and the wild-type 5' LTRs on pLVX vectors contribute to higher titers. In 13 independent packaging reactions performed with 10 different fluorescent protein constructs, the average titer obtained for pLVX vectors packaged using the Lenti-X system was 1.85 x 108 IFU/ml, as determined by flow cytometric analysis of transduced HeLa cells.

Easy-to-use systems for lentiviral packaging Lentiviral packaging FAQs

Watch a video and see how easy it is to use Lenti-X Packaging Single Shots to obtain consistently high lentiviral titers.

What type of cells should be used for packaging?

Lenti-X Packaging Single Shots (VSV-G) provide an extremely simple and consistent one-step method for producing high-titer VSV-G pseudotyped lentivirus. The single-tube format consists of individual vials containing lyophilized Xfect Transfection Reagent premixed with an optimized formulation of Lenti-X lentiviral packaging plasmids. High-titer virus is produced by simply reconstituting this mixture with your lentiviral vector of choice in sterile water and adding it to 293T cells in a 10-cm dish.

Lenti-X packaging workflow

Figure 3. Lenti-X packaging workflow.

In addition to Lenti-X Packaging Single Shots, we also offer packaging systems for generating VSV-G pseudotyped lentivirus and ecotropic pseudotyped lentivirus in a traditional format. These kits include packaging mix and Xfect Transfection Reagent as separate liquid components.

Lenti-X packaging systems are optimized for use with Lenti-X 293T Cells, a clone selected at Takara Bio for its ability to generate high-titer lentivirus. HEK 293 and 293FT cells can be used but will produce lower titers of packaged lentiviral particles (Section: High lentiviral titer; Figure 2).

Lenti-X 293T cells

Figure 4. Lenti-X 293T cells produce over six times more virus than 293FT cells, and up to 30 times more virus than HEK 293 cells.

How consistent are results?

Eliminating variability during reaction setup leads to consistent transfections that consistently yield high viral titers.

Figure 5. Consistent, high-efficiency transfections lead to high titers. A lentiviral vector encoding ZsGreen1 was packaged according to the Lenti-X Single Shots protocol in four independent experiments. Forty-eight hours after transfection, the cells were imaged by fluorescence microscopy (Panel A, top) and light microscopy (Panel A, bottom). After images were taken, the supernatant was harvested and used to infect HT1080 cells for titer determination (Panel B, IFU/ml).

Which types of lentiviral vectors are compatible with this system?

We have not tested all vectors, but in principle, any HIV-1-based vector should be efficiently packaged using this system, resulting in high-titer lentivirus. For example, a ZsGreen1 cassette in the pLenti6/V5 vector (Thermo Fisher Scientific)—a vector that lacks the WPRE and cPPT/CTS sequence elements and utilizes self-inactivating (SIN) LTRs—yielded titers of  >3 x 107 IFU/ml, as determined by flow cytometry. Since the Lenti-X system utilizes Tat transactivation, lentiviral vectors that utilize HIV-1 5' LTRs (such as pLVX vectors) will generate higher titers than those containing other LTRs. Vectors lacking WPRE and/or cPPT/CTS sequences yield consistently lower titers than Takara Bio pLVX vectors.

Note: Use of vector systems other than Takara Bio's may require additional rights from third parties. You should evaluate whether permission from any third party is required for your intended use.

Lenti-X Packaging Single Shots can produce high-titer virus regardless of the lentiviral vector backbone used and regardless of the method used for titration.

High-titer virus produced regardless of the lentiviral vector backbone with Lenti-X Packaging Single Shots

Figure 6. High-titer virus is produced regardless of the lentiviral vector backbone. A CMV ZsGreen1 expression cassette was cloned into several lentiviral vector backbones. These vectors were then packaged into lentivirus using Lenti-X Packaging Single Shots following the provided protocol. After 48 hr, titer was determine using several methods. To determine infectivity, the supernatant was harvested and used to infect HT1080 cells (flow cytometry). Harvested viral supernatants were also analyzed by RT-PCR to quantify viral genome copies (qRT-PCR, Lenti-X qRT-PCR Titration Kit), by ELISA to measure p24 (p24 ELISA, Lenti-X p24 Rapid Titer Kit), and by a rapid lentiviral-detection method (Lenti-X GoStix).

What is the cloning/packaging capacity of an HIV-1-based lentiviral vector?

Wild type lentiviruses contain ~9.7 kb of genome including both LTRs. Artificially creating a genome larger than this will result in unstable viral particles and a dramatic drop in viral titer. For recombinant lentiviruses such as those generated using Lenti-X systems, much of the viral genome has been replaced with other useful sequences such as selection markers or fluorescent proteins, but enough space remains for cloning transgenes.

  • The 3' LTR of pLVX-Puro ends at 5.4 kb, so ~4.3 kb of space remains for you to clone in your gene
  • The 3' LTR of pLVX-IRES-tdTomato ends at 6.3 kb, so ~3.4 kb of space remains for you to clone in your gene

Lentiviral safety information Improved safety profile

Although all lentiviral vectors should be handled in at least a BSL-2 laboratory, biosafety issues can be greatly mitigated by carefully considering the nature of the transgene insert and by ensuring that viral replication is restricted to specific packaging cells that provide these essential functions, in trans. For lentiviral transfer vectors to generate DNA-mobilizing, replication-competent lentivirus (RCL), several additional viral sequences must be acquired from the packaging plasmids via recombination (i.e., the structural genes gag-pro and env; and the reverse transcriptase/integrase gene, pol). In third-generation systems, gag-pro and pol sequences are in the same transcriptional unit, while env (VSV-G) is on a separate plasmid. Therefore, in these systems, generation of RCL requires two recombination events. With Lenti-X Packaging Systems, gag-pro and pol are further separated onto two plasmids (Figure 7), such that three low-frequency recombination events would be needed to generate RCL. Click here for more safety information.

Lenti-X HTX Packaging System vectors

Figure 7. Takara Bio's Lenti-X HTX Packaging Systems consist of five separate vectors (left). High expression of essential viral components are driven by the Tet-Off and Tat transactivators. The pol gene is fused to vpr to ensure transport of the reverse transcriptase/integrase protein into the recombinant viral particle. Other third-generation systems (right) do not contain separate gag and pol sequences. Not all vector elements are shown.

Products for lentiviral packaging Available products for lentiviral packaging

Product name Features
Lenti-X Packaging Single Shots Extremely simple and consistent one-step method for producing high-titer-generating VSV-G pseudotyped lentivirus Learn more »
Lenti-X 293T Cell Line 293T clone selected for high-titer lentivirus production Learn more »

Related product pages

  • Viral product finder tool
  • Lentiviral vectors
  • Premade lentiviral particles
  • Lentiviral packaging kits
  • Lentivirus titration kits
  • Lenti-X Concentrator
  • Lentivirus purification kits
  • Integration-site analysis
  • Transduction enhancers

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us