We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About

Close

  • ‹ Back to PCR FAQs
  • Primer design
  • Optimization
  • Troubleshooting
  • Applications and conditions
  • Shipping, storage, and handling
DNA polymerase brochure Download: PCR enzyme brochure
Home › Learning centers › PCR › PCR FAQs › Optimization

PCR

  • Citations
    • PrimeSTAR HS
    • EmeraldAmp MAX
    • Terra PCR Direct
    • EmeraldAmp GT
    • Takara Ex Taq
    • PrimeSTAR Max
    • PrimeSTAR GXL
    • Takara LA Taq
    • SpeedSTAR HS
    • Takara Taq and Taq HS
    • Titanium Taq
  • Selection guides
    • PCR selection guide
    • Direct PCR selection guide
    • GPR-registered PCR products selection guide
    • Commercial-use PCR selection guide
    • Fast PCR selection guide
  • PCR enzyme brochure
  • Technical notes
    • Rapid, high-performance multiplex PCR
    • EmeraldAmp outperforms MyTaq Red mix
    • Fast and accurate PCR
    • Methylation studies
    • Hot-start PCR
    • Long-range PCR with LA Taq
    • Direct PCR from human nail
    • Direct PCR from meat samples
    • Megaprimer PCR with PrimeSTAR GXL
    • Amplifying GC-rich templates
    • Titanium Taq for high-throughput genotyping
    • Colony PCR in under an hour
    • High-throughput endpoint PCR
    • Direct PCR from blood
    • PrimeSTAR GXL for targeted sequencing
    • Detecting somatic mosaicism using massively parallel sequencing
  • PCR FAQs
    • Primer design
    • Optimization
    • Troubleshooting
    • Applications and conditions
    • Shipping, storage, and handling
  • Go green with lyophilized enzymes
New products
Need help?
Contact Sales
DNA polymerase brochure Download: PCR enzyme brochure

Optimizing your PCR

PCR can sometimes require optimization of reaction conditions in order to obtain a successful result. Learn how to optimize PCR conditions for your experiments using the FAQs below.

When optimizing PCR conditions, which conditions are particularly important?

Initial denaturation step

Preheating is sometimes required to denature complex templates (e.g., genomic DNA); 94°C for 1 min is sufficient for denaturation. Excessive heat treatment may lead to enzyme inactivation.

  • For Terra PCR Direct Polymerase Mix, which is used for direct PCR amplification from tissue without DNA extraction and purification, preheating at 98°C for 2 min is required.
  • For Takara LA Taq DNA polymerases and Advantage GC2 DNA polymerases, an initial denaturation step is required.
  • PrimeSTAR enzymes do not require preheating for enzyme activation.

Denaturing conditions

Denaturing conditions should be selected by considering the thermal cycler model that will be used. A general guideline is 94–95°C for 30 sec or 98°C for 10 sec.

If using a heat-resistant enzyme, such as one of the PrimeSTAR polymerases, we recommend a denaturation step of short duration and high temperature (i.e., 5–10 sec at 98°C).

Denaturation at an excessively high temperature or for too long may result in loss of enzyme activity and/or damage to long templates.

Annealing conditions

The annealing step should be adjusted for each primer set; the annealing temperature depends directly on the Tm of primers. Using annealing temperatures that are too low may result in mispriming and nonspecific amplification, leading to low yields of the desired product.

Amplification efficiency and specificity can be improved by adjusting the annealing temperature according to the primer's Tm or by performing two-step PCR.

  • For Taq enzymes, the recommended annealing time is 30 sec.
  • Enzymes in the PrimeSTAR series have excellent priming efficiency. Therefore, it is important to use a short annealing time of 5–15 sec. Excessively long annealing times may lead to mispriming-induced nonspecific amplification.
  • When amplifying short sequences smaller than 1 kb, a three-step PCR protocol is recommended. For GC-rich targets or amplifications of long sequences (>10 kb), a two-step PCR protocol is recommended.

Extension step

In general, an extension time of 1 min/kb is recommended. When using the high-speed enzymes SpeedSTAR HS DNA Polymerase or SapphireAmp Fast PCR Master Mix, use a reaction rate of 10 sec/kb of amplified product (i.e., 10 sec for a 1-kb product, 20 sec for a 2-kb product, etc.).

PrimeSTAR Max DNA Polymerase and PrimeSTAR GXL DNA Polymerase contain a proprietary elongation factor and allow for high-speed reactions at 5–20 sec/kb. If using these enzymes with samples containing excess template, an elongation time of 1 min/kb should be used.

Should I use a three-step or a two-step PCR protocol?

Three-step PCR includes denaturation, annealing, and extension steps. This type of protocol should be used when the Tm of the primers is lower than the extension temperature or is less than 68°C.

If the melting temperature of the primer (Tm) is close to the extension temperature (72°C) or a few degrees lower, consider using a two-step PCR protocol that includes a denaturation step and a combined annealing/extension step. With this protocol, the annealing temperature should not exceed the extension temperature.

Which extension temperature should I use, 68°C or 72°C?

A 68°C extension temperature is preferred for two-step PCR and when amplifying longer templates (>4 kb). This lower extension temperature dramatically improves yields of longer amplification products by reducing the depurination rate that influences amplification.

72°C should be used as the extension temperature when performing three-step standard PCR and for amplification of short fragments (<4 kb).

What is the optimal amount of DNA template that should be used for PCR?

The optimal amount of template required depends on the complexity of the template and the copy number of the target sequence. Approximately 104 copies of the target DNA sequence are required to detect the amplification product in 25–30 PCR cycles.

  • Typically, 1 µg of human genomic DNA contains 3.04 x 105 molecules of DNA. For most PCR applications, 30–100 ng of human genomic DNA is sufficient. High-copy targets, such as housekeeping genes, require only 10 ng of template. Template amounts for higher-complexity templates range between 10 ng and 500 ng.
  • Typically, 1 µg of E. coli genomic DNA contains 2 x 108 molecules of DNA; therefore, the recommended amount of template is between 100 pg and 1 ng.
  • Typically, 1 µg of lambda DNA contains 1.9 x 1010 molecules of DNA; therefore, the template input can be as little as 100 pg.
  • The amount of cDNA template depends on the copy number of the target. cDNA input is typically described in terms of equivalent RNA input. The amount of cDNA in a PCR reaction can be as little as 10 pg (RNA equivalent).

It is important to note that not all polymerases can tolerate excessive amounts of template. For samples containing excess template (up to 1 µg), we recommend PrimeSTAR GXL DNA Polymerase.

What are the critical factors for amplification of long genomic targets?

Template quality

DNA integrity is critical for amplification of long targets. DNA damage—such as DNA breakage during DNA isolation or DNA depurination at elevated temperatures and low pH—results in a greater amount of partial products and decreased overall yield. DNA damage can also occur in acidic conditions; therefore, avoid using water for resuspending DNA templates. DNA is most stable at pH 7–8 or in buffered solutions.

PCR conditions

  • Denaturation time should be kept to a minimum to decrease depurination events.
  • Use touchdown PCR; start at a higher annealing temperature and reduce by two degrees per cycle for several cycles.
  • Design primers with melting temperatures (Tm) above 68°C.

PCR polymerases

We offer several PCR polymerases optimized for long-range PCR. Takara LA Taq DNA polymerase, TaKaRa LA Taq Polymerase with GC Buffer, and PrimeSTAR GXL DNA Polymerase are recommended depending on the GC content and size of the target(s).

How do I determine if a template is GC rich?

The GC ratio varies across the genome. Templates with >65% GC content are considered GC rich. GC-rich regions of the genome are mostly concentrated in regulatory regions, including promoters, enhancers, and cis-regulatory elements. GC-rich tracts tend to form inverted repeats, or hairpin structures, that may not melt during the annealing step of PCR. Therefore, amplification of GC-rich templates is hindered by inefficient separation of the two DNA strands. This results in truncated amplicons due to premature termination of polymerase extension.

What are the critical factors for amplification of GC-rich templates?

PCR conditions

  • Use higher denaturation temperatures (e.g., 98°C as opposed to 94°C or 95°C) to allow complete denaturation of the template.
  • Keep annealing times for GC-rich templates as short as possible.
  • Use primers with a higher Tm (>68°C), because annealing can occur at a higher temperature.

PCR polymerases

Use a polymerase optimized for amplification of GC-rich sequences. To find an enzyme, visit our selection guide.

Can DMSO be added to improve amplification of GC-rich templates?

We have heard from customers that improved amplification of GC-rich templates was obtained by adding DMSO to reactions using PrimeSTAR MAX DNA Polymerase or CloneAmp HiFi PCR Premix. The recommended concentration of DMSO is between 2.5% and 5%.

How can I optimize PCR conditions for AT-rich templates?

Some templates may have long AT-rich stretches that are hard to amplify under standard reaction conditions. The Plasmodium falciparum genome is about 80% AT, and regions flanking genes are often AT rich.

Polymerases recommended for GC-rich templates, such as EmeraldAmp GT PCR Master Mix, EmeraldAmp Max PCR master mixes, and PrimeSTAR GXL DNA Polymerase, are also suitable for AT-rich templates.

The advantage of having AT-rich templates is that a lower extension temperature can be used. For certain templates with AT content >80–85%, the extension temperature can be lowered from 72°C to 65–60°C. DNA replication at this reduced temperature appears to be reliable (Su et al. 1996).

References

Su, X. Z., et al. Reduced Extension Temperatures Required for PCR Amplification of Extremely A+T-rich DNA. Nucl Acids Res. 24, 1574–1575 (1996).

What is the role of magnesium in PCR, and what is the optimal concentration?

Magnesium is a required cofactor for thermostable DNA polymerases and is important for successful amplification. Without adequate free Mg2+, PCR polymerases are not active. In contrast, excess free Mg2+ reduces enzyme fidelity and may increase nonspecific amplification. A number of factors can affect the amount of free Mg2+ in a reaction, including DNA template concentration, chelating agents in the sample (e.g., EDTA or citrate), dNTP concentration, and the presence of proteins.

  • Some polymerases (e.g., Takara Ex Taq DNA polymerases and Takara LA Taq DNA polymerases) are supplied with a magnesium-free reaction buffer and a separate tube of 25 mM MgCl2. For these enzymes, you can optimize the Mg2+ concentration for each reaction.
  • Titanium Taq DNA polymerases and Advantage 2 DNA polymerases are magnesium-tolerant polymerases that are supplied with buffers containing 3.5 mM of MgCl2.
  • The final concentration of Mg2+ for PrimeSTAR GXL DNA Polymerase and PrimeSTAR MAX DNA Polymerase reactions is 1 mM; this concentration increases fidelity for these enzymes.

What is the role of salt in PCR reactions?

Successful PCR requires that the DNA duplex separates during the denaturation step and that primers anneal to the denatured DNA. Salt neutralizes the negative charges on the phosphate backbone of DNA, stabilizing double-stranded DNA by offsetting negative charges that would otherwise repel one another. Potassium chloride (KCl) is normally used in PCR amplifications at a final concentration of 50 mM. To improve amplification of DNA fragments, especially fragments between 100 and 1,000 bp, a KCl concentration of 70–100 mM is recommended. For amplification of longer products, a lower salt concentration appears to be more effective, whereas amplification of shorter products occurs optimally with higher salt concentrations. This effect is likely because high salt concentration preferentially permits denaturation of short DNA molecules over long DNA molecules.

It is important to note that a salt concentration above 50 mM can inhibit Taq polymerases.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2019 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. (TBUSA, formerly known as Clontech Laboratories, Inc.) provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
  • Corporate development
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2019 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • Apollo system
  • ICELL8 system and software
  • Next-generation sequencing
  • Single-cell RNA- and DNA-seq
  • RNA-seq
  • DNA-seq
  • Immune profiling
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Cell biology assays
  • Extracellular vesicle miniprep
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Signal transduction
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • Fluorescent protein plasmids
  • Capturem his-tagged purification sale
  • In-Fusion Cloning sale
  • qPCR promotion
  • Nucleic acid purification sale
  • Nucleic acid purification kit samples
  • Power medium promotion
  • CRISPR-Cas9 promotion
  • Lenti-X special offers
  • PCR samples
Alzheimer's disease research

Alzheimer's disease research

Alzheimer's disease (AD) affects ~5.8 million adults and is the sixth leading cause of death in the US alone. Over 400 AD clinical trials are currently under way, investigating the possibilities of immunotherapy, our microbiome, and inflammation as prospective therapeutic targets. We have a variety of best-in-class products that can help your AD research move forward.

See how our best-in-class solutions can help to advance your AD research

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • Apollo library prep system introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Selection guide
  • Product line overview
  • Technical notes
  • FAQs and tips
  • Webinars
  • Posters
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Overview
  • Technical notes
  • FAQs
  • Stem cell research
  • Applications
  • Technical notes
  • Webinars
  • Videos
  • Protocols
  • Citations
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • Automated DNA and RNA purification
  • RNA purification
  • Hard-to-lyse samples
  • cDNA synthesis
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Cloning
  • In-Fusion Cloning tools
  • In-Fusion Cloning guide
  • In‑Fusion Cloning FAQs
  • In‑Fusion Cloning tips
  • Choosing a seamless cloning method
  • Seamless cloning primer design
  • Cell biology assays
  • Extracellular vesicle isolation from biofluids
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Protein research
  • Capturem rapid purification technology
  • Antibody purification
  • His-tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Antibodies and ELISA
Capturem Trypsin for a rapid, efficient mass spectometry workflow at room temperature.

Speed up your mass spec workflow

Capturem Trypsin provides rapid, efficient, and complete digestion of protein samples, allowing an uninterrupted mass spectometry workflow at room temperature for downstream protein analysis. This product utilizes our novel Capturem technology in a spin column format with membrane-immobilized trypsin. Capturem Trypsin Columns may be used to completely digest protein samples in less than a minute with digestion efficiencies (protein coverage) comparable to or better than those obtained using in-solution trypsin digestion.

Capturem trypsin technology

  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Website FAQs
  • Feedback
  • Trademarks
  • License statements
  • Vector information
  • Vector document overview
  • Vector document finder
  • Online tools
  • Business development
  • Partnering & OEM solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Instrument & reagent services
  • Cell and gene therapy manufacturing services
  • OEM & custom enzyme manufacturing
  • Instrument services
  • Stem cell services
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

Learn more

  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • Announcements
  • Events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Quality statement
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • BioView blog
  • That's Good Support!
  • Automation
  • Cancer research
  • Career spotlights
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • About our blog
  • Need help?
Best-in-class products, expert support, superior value

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • Feedback
  • About
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. (TBUSA, formerly known as Clontech Laboratories, Inc.) provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • Apollo system
  • ICELL8 system and software
  • Next-generation sequencing
  • Single-cell RNA- and DNA-seq
  • RNA-seq
  • DNA-seq
  • Immune profiling
  • Epigenetics and small RNA sequencing
  • NGS accessories
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • ProteoTuner protein control systems
  • iDimerize inducible protein interaction systems
  • Transfection reagents
  • Mammalian expression plasmids
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Accessories
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Expression vectors & systems
  • Glycobiology
  • Antibodies and immunoprecipitation
  • SDS-PAGE & western blotting
  • Protein sequencing
  • Accessory enzymes
  • PCR
  • Most popular polymerases
  • Standard PCR
  • High-yield PCR
  • High-fidelity PCR
  • Fast PCR
  • Long-range PCR
  • GC rich PCR
  • Direct PCR
  • PCR master mixes
  • Custom business friendly and automation-ready solutions
  • Molecular diagnostic products
  • GMP-grade products
  • Application-specific PCR
  • Other PCR-related products
  • PCR thermal cyclers
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Mutagenesis kits
  • Ligation enzymes
  • Restriction enzymes
  • Modifying enzymes
  • Legacy cloning products
  • X-Gal and IPTG
  • Linkers, primers, and cloning vectors
  • Agarose gel electrophoresis
  • Nucleic acid extraction
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • RNA cleanup kits
  • Viral DNA and RNA purification kits
  • Accessories and components
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Secondary antibodies
  • Antibody and ELISA accessories
  • Fluorescent protein antibodies
  • Cell biology assays
  • Extracellular vesicle miniprep
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Cell biology reagents
  • RNA interference
  • Cell-culture accessories
  • Signal transduction
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • Real-time PCR primer sets
  • References and standards for qPCR
  • RNA extraction and analysis for real-time qPCR
  • Application-specific qPCR
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • cDNA synthesis accessories
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • Apollo library prep system introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Selection guide
  • Product line overview
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Webinars
  • Citations
  • Posters
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Stem cell research
  • Applications
  • Technical notes
  • Posters
  • Webinars
  • Videos
  • Protocols
  • FAQs
  • Citations
  • Selection guides
  • Overview
  • Protein research
  • Capturem rapid purification technology
  • Antibody purification
  • His-tag purification
  • Other tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Expression systems
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Go green with lyophilized enzymes
  • LA PCR technology
  • Cloning
  • In-Fusion Cloning tools
  • In-Fusion Cloning guide
  • In‑Fusion Cloning FAQs
  • In‑Fusion Cloning tips
  • Choosing a seamless cloning method
  • Seamless cloning primer design
  • In-Fusion Cloning applications collection
  • Efficient cloning for sgRNA/Cas9 plasmids
  • In-Fusion Cloning tech notes
  • In-Fusion Cloning webinars
  • In-Fusion Cloning citations
  • EcoDry reagents and sustainability
  • Mutagenesis with In-Fusion Cloning
  • Efficient multiple-fragment cloning
  • Sign up to stay updated
  • Traditional molecular cloning
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • Parallel DNA, RNA & protein
  • Automated DNA and RNA purification
  • RNA purification
  • Hard-to-lyse samples
  • Antibodies and ELISA
  • Osteocalcin focus
  • Cell biology assays
  • Extracellular vesicle isolation from biofluids
  • Cell viability kits
  • Exosome isolation from cell culture
  • Mir-X microRNA quantification
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Overview
  • Technical notes
  • FAQs
  • cDNA synthesis
  • Premium total and poly A+ RNA
  • SMARTer RACE 5'/3' Kit—advances in SMARTer PCR cDNA synthesis
  • Cloning antibody variable regions
  • Services & Support
  • Technical support
  • Shipping & delivery
  • Customer service
  • Sales
  • Website FAQs
  • Vector information
  • Online tools
  • Instrument & reagent services
  • Corporate development
  • Takara Bio affiliates & distributors
  • License statements
  • Trademarks
  • Vector information
  • Vector document overview
  • Vector document finder
  • Instrument & reagent services
  • Cell and gene therapy manufacturing services
  • OEM & custom enzyme manufacturing
  • Instrument services
  • Stem cell services
  • Corporate development
  • Partnering & OEM solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Areas of interest
  • Cancer research
  • Immunotherapy research
  • Alzheimer's disease research
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • About
  • Manufacturing DSS Takara Bio India
  • Careers
  • Quality and compliance
  • Need help?
  • Our brands
  • Our history
  • Announcements
  • Our partners
  • BioView blog
  • That's Good Science!
  • Special offers
  • New products
  • Events
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • BioView blog
  • That's Good Support!
  • Automation
  • Cancer research
  • Career spotlights
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • About our blog
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • Special offers
  • Buy Again and Save More on DSS Takara Bio India Manufactured products
  • Classic Campaign on Takara Bio and Macherey Nagel products
  • Fluorescent protein plasmids
  • Fluorescent protein plasmids
  • Capturem his-tagged purification sale
  • In-Fusion Cloning sale
  • qPCR promotion
  • Nucleic acid purification sale
  • Nucleic acid purification kit samples
  • Power medium promotion
  • CRISPR-Cas9 promotion
  • Lenti-X special offers
  • PCR samples
  • EOY Promo (DKK)
  • EOY Promo (EUR)
  • EOY Promo (SEK)
  • EOY Promo (CHF)
  • EOY Promo (GBP)
  • qPCR-RT promo (DKK)
  • RT-qPCR bundle promotion (EUR)
  • RT-qPCR bundle promotion (SEK)
  • RT-qPCR bundle promotion (CHF)
  • RT-qPCR bundle promotion (GBP)
  • Events
  • Calendar
  • Conferences
  • Speak with us
  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About