We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Genome-wide screening
  • CRISPR library screening
  • CRISPR library screening webinar
  • Phenotypic screen using sgRNA library system
Gene editing in hiPS cells Complete workflows for efficient gene editing in hiPS cells
Home › Learning centers › Gene function › Gene editing › Genome-wide screening › CRISPR library screening webinar

Gene editing

  • Gene editing product finder
  • Gene editing tools and information
    • sgRNA design tools
    • Tools for successful CRISPR/Cas9 genome editing
    • Gene editing posters
    • Customer data for Guide-it products
    • How to design sgRNA sequences
    • Introduction to the CRISPR/Cas9 system
    • Gene editing of CD3+ T cells and CD34+ HSCs
  • CRISPR/Cas9 knockouts
    • Mutation detection kit comparison
    • Screening for effective guide RNAs
    • Monoallelic versus biallelic mutants
    • Indel identification kit for mutation characterization
  • CRISPR/Cas9 knockins
    • Choosing an HDR template format
    • Homology-directed repair FAQs
    • Mouse CRISPR knockin protocol
    • Site-specific gene knockins using long ssDNA
    • Efficient CRISPR/Cas9-mediated knockins in iPS cells
    • Oligo design tool for detecting precise insertions
      • Oligo design tool user guide (insertions)
  • Genome-wide screening
    • CRISPR library screening
    • CRISPR library screening webinar
    • Phenotypic screen using sgRNA library system
  • Creating and screening for SNPs
    • SNP detection with knockin screening kit
    • Oligo design tool for SNP screening
      • Oligo design tool user guide (SNPs)
    • Sign up: SNP engineering webinar
    • Guide-it SNP Screening Kit FAQs
  • CRISPR/Cas9 delivery methods
    • Electroporation-grade Cas9 for editing in diverse cell types
    • CRISPR/Cas9 gene editing with AAV
    • CRISPR/Cas9 gesicles overview
    • Cas9 Gesicles—reduced off-target effects
    • sgRNA-Cas9 delivery to many cell types
    • Tet-inducible Cas9 for gene editing
  • Cre recombinase
    • Control your Cre recombinase experiments
    • Fast Cre delivery with gesicle technology
New products
Need help?
Contact Sales
Gene editing in hiPS cells Complete workflows for efficient gene editing in hiPS cells

Genome-wide sgRNA library screening made simple.

In this webinar, Thomas Quinn discusses the design and execution of genome-wide CRISPR/Cas9-based knockout screens using pooled lentiviral sgRNA libraries. He also describes the features and benefits of the Guide-it CRISPR Genome-Wide sgRNA Library System and NGS analysis kit, a complete solution developed with the aim of making lentiviral CRISPR/Cas9 screening accessible to all.

The webinar is displayed in the order it was given, but divided into bite-size sections, so you can jump right to the topic that interests you most.


Thomas Quinn

About the presenter

Thomas Quinn, M.S.

Group Leader (Virology), Takara Bio USA, Inc.

Thomas received his B.S. degree in Zoology with a concentration in Genetics from Michigan State University in 1992. In 1997, he completed his M.S. in Molecular Medicine and Genetics from Wayne State University. His thesis work focused on the development of viral vector systems for application in CAR-T therapies directed at melanoma and lung malignancies. Since 1998, he has been working at Takara Bio USA, Inc. as a Group Leader focusing on the development of high-efficiency viral delivery products including adenoviral, retroviral, lentiviral and AAV systems, as well as CRISPR/Cas9 based genome editing products.


Introduction and objectives

Introduction and objectives

What is CRISPR/Cas9? What are the advantages of performing genome-wide knockouts using pooled libraries? What is the best way to identify the genes responsible for your observed phenotype?

Watch Now


Overview of a genome-wide sgRNA library screen

Overview of a genome-wide sgRNA library screen

What are some possible methods for performing a genome-wide screen and points to consider? Using a drug resistance phenotype screen as an example, learn how knocked-out genes that convey resistance or sensitivity to the drug can be identified by downstream NGS analysis.

Watch Now


Advantages and challenges of pooled libraries

Advantages and challenges of pooled libraries

What are the advantages and challenges of guide RNA libraries vs. RNAi and arrayed libraries vs. pooled libraries? Challenges include using effective guide RNA designs, making sure that the complexity of your library allows you to screen the entire human genome for targets, producing sufficient amounts of high-quality lentivirus, and maintaining library representation throughout all the handling steps.

Watch Now


Why we choose the Brunello algorithm, and how we tested its effectiveness

Why we choose the Brunello algorithm, and how we tested its effectiveness

Learn how the lentiviral vector and guide RNAs in the library are designed for maximizing performance, and for predicting, selecting, and testing for active guide RNAs. Also learn about the advantages of the Brunello library algorithm, optimization of the number of guides per gene, and their representation relative to each other in the library. How does the representation of guide RNAs in the plasmid library correlate to their representation in the virus produced from it?

Watch Now


Workflow and timeline for a genome-wide library screen

Workflow and timeline for a genome-wide library screen

Learn more about the workflow timeline, the steps for obtaining transduced cells that contain Cas9 and a single copy of guide RNA per cell, as well as the approximate time needed for each of these steps.

Watch Now


Creation of a screenable Cas9 stable cell line

Creation of a screenable Cas9 stable cell line

Take a deeper look at the process for creating the perfect Cas9+ stable cell line prior to the screening. Why test different MOI levels? Is Cas9 expression consistent over time?

Watch Now


Library preparation, titration, and transduction

Library preparation, titration, and transduction

With this simple-to-use, all-in-one format of the guide RNA library all you need to do is add water! See math demonstrating how much virus you need and how many target cells you need to transduce. Learn how our library design reduces your workload.

Watch Now


After completion of the library screening

After completion of the library screening

Learn about downstream processes such as large-scale DNA isolation, NGS library preparation, data analysis, and where to get sequence information for the library.

Watch Now


Demonstration of an actual screening experiment

Demonstration of an actual screening experiment

Learn about a library screening we performed from start to finish to identify the genes involved in 6-thioguanine (6-TG) resistance. Also, see sequencing data and the description of useful basic analysis tools.

Watch Now


Webinar summary

Webinar summary

Thomas Quinn summarizes the take-home messages from the webinar. Our optimized design overcomes many of the difficulties associated with library screening, such as maintaining the representation of guide RNAs and maximizing on-target editing.

Watch Now


Gene editing tools Gene editing tools and information
Product finder tool for gene editing Gene editing product finder
CRISPR/Cas9 knockouts CRISPR/Cas9 knockouts
CRISPR/Cas9 knockin CRISPR/Cas9 knockins
Genome-wide sgRNA libraries Genome-wide screening
Cas9 delivery CRISPR/Cas9 delivery
Creating SNPs using CRISPR Creating SNPs
CRISPR in induced plutipotent stem cells Gene editing in hiPS cells
Cre recombinase Cre recombinase

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

Introduction and objectives

What is CRISPR/Cas9? What are the advantages of performing genome-wide knockouts using pooled libraries? What is the best way to identify the genes responsible for your observed phenotype?

Overview of a genome-wide sgRNA library screen

What are some possible methods for performing a genome-wide screen and points to consider? Using a drug resistance phenotype screen as an example, learn how knocked-out genes that convey resistance or sensitivity to the drug can be identified by downstream NGS analysis.

Advantages and challenges of pooled libraries

What are the advantages and challenges of guide RNA libraries vs. RNAi and arrayed libraries vs. pooled libraries? Challenges include using effective guide RNA designs, making sure that the complexity of your library allows you to screen the entire human genome for targets, producing sufficient amounts of high-quality lentivirus, and maintaining library representation throughout all the handling steps.

Why we choose the Brunello algorithm, and how we tested its effectiveness

Learn how the lentiviral vector and guide RNAs in the library are designed for maximizing performance, and for predicting, selecting, and testing for active guide RNAs. Also learn about the advantages of the Brunello library algorithm, optimization of the number of guides per gene, and their representation relative to each other in the library. How does the representation of guide RNAs in the plasmid library correlate to their representation in the virus produced from it?

Workflow and timeline for a genome-wide library screen

Learn more about the workflow timeline, the steps for obtaining transduced cells that contain Cas9 and a single copy of guide RNA per cell, as well as the approximate time needed for each of these steps.

Creation of a screenable Cas9 stable cell line

Take a deeper look at the process for creating the perfect Cas9+ stable cell line prior to the screening. Why test different MOI levels? Is Cas9 expression consistent over time?

Library preparation, titration, and transduction

With this simple-to-use, all-in-one format of the guide RNA library all you need to do is add water! See math demonstrating how much virus you need and how many target cells you need to transduce. Learn how our library design reduces your workload.

After completion of the library screening

Learn about downstream processes such as large-scale DNA isolation, NGS library preparation, data analysis, and where to get sequence information for the library.

Demonstration of an actual screening experiment

Learn about a library screening we performed from start to finish to identify the genes involved in 6-thioguanine (6-TG) resistance. Also, see sequencing data and the description of useful basic analysis tools.

Webinar summary

Thomas Quinn summarizes the take-home messages from the webinar. Our optimized design overcomes many of the difficulties associated with library screening, such as maintaining the representation of guide RNAs and maximizing on-target editing.

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us