We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to CRISPR/Cas9 knockouts
  • Mutation detection kit comparison
  • Screening for effective guide RNAs
  • Monoallelic versus biallelic mutants
  • Indel identification kit for mutation characterization
Indel identification Indel identification kit
Home › Learning centers › Gene function › Gene editing › CRISPR/Cas9 knockouts › Indel identification kit for mutation characterization

Gene editing

  • Gene editing product finder
  • Gene editing tools and information
    • sgRNA design tools
    • Tools for successful CRISPR/Cas9 genome editing
    • Gene editing posters
    • Customer data for Guide-it products
    • How to design sgRNA sequences
    • Introduction to the CRISPR/Cas9 system
    • Gene editing of CD3+ T cells and CD34+ HSCs
  • CRISPR/Cas9 knockouts
    • Mutation detection kit comparison
    • Screening for effective guide RNAs
    • Monoallelic versus biallelic mutants
    • Indel identification kit for mutation characterization
  • CRISPR/Cas9 knockins
    • Choosing an HDR template format
    • Homology-directed repair FAQs
    • Mouse CRISPR knockin protocol
    • Site-specific gene knockins using long ssDNA
    • Efficient CRISPR/Cas9-mediated knockins in iPS cells
    • Oligo design tool for detecting precise insertions
      • Oligo design tool user guide (insertions)
  • Genome-wide screening
    • CRISPR library screening
    • CRISPR library screening webinar
    • Phenotypic screen using sgRNA library system
  • Creating and screening for SNPs
    • SNP detection with knockin screening kit
    • Oligo design tool for SNP screening
      • Oligo design tool user guide (SNPs)
    • Sign up: SNP engineering webinar
    • Guide-it SNP Screening Kit FAQs
  • CRISPR/Cas9 delivery methods
    • Electroporation-grade Cas9 for editing in diverse cell types
    • CRISPR/Cas9 gene editing with AAV
    • CRISPR/Cas9 gesicles overview
    • Cas9 Gesicles—reduced off-target effects
    • sgRNA-Cas9 delivery to many cell types
    • Tet-inducible Cas9 for gene editing
  • Cre recombinase
    • Control your Cre recombinase experiments
    • Fast Cre delivery with gesicle technology
New products
Need help?
Contact Sales
Indel identification Indel identification kit
Tech Note

Characterization of CRISPR/Cas9-introduced mutations using the Guide-it Indel Identification Kit

  • A streamlined method for identifying indels introduced by CRISPR/Cas9 genome editing in a cell population
  • Knockout of AcGFP1 using CRISPR/Cas9 genome editing
  • Disruption of CD81 using CRISPR/Cas9 genome editing

The Guide-it Indel Identification Kit contains all components needed to amplify directly from cells, clone, and prepare modified target sites for DNA sequence analysis—in only 15 minutes.

Introduction Results

Introduction  

The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system is the newest tool for targeted genome editing. This genome editing technique is the most flexible method so far. This system is based on two key components that form a complex: the Cas9 endonuclease and a target-specific RNA (single guide RNA or sgRNA) that guides Cas9 to the genomic DNA target site (Figure 1).

Double strand breaks that are introduced to genomic DNA by Cas9 nuclease can be repaired via the homologous recombination (HR) or nonhomologous end joining (NHEJ) cellular repair mechanisms. HR requires an identical (or nearly identical) DNA template to repair the break, and results in full correction of the DNA cleavage. However, DNA damage is more commonly repaired by NHEJ. In this case, cellular machinery ligates the two broken ends of the DNA without a template donor. This process is more error prone than HR, and often insertions and deletions (indels) are incorporated, resulting in a DNA sequence that differs from the wild-type sequence.

Learn more about CRISPR/Cas9 gene disruption »

Results  

A streamlined method for indel identification

Any cell in a population has the ability to correct endonuclease cleavage by either HR or NHEJ, resulting in a variety of DNA sequences at the target site in different cells. To identify the range of indels at the genomic DNA target site in a cell population after editing, we developed a streamlined workflow to amplify, clone, and analyze target sites by DNA sequencing (Figure 1).

This protocol uses a small sample of the cell population as a template for direct PCR amplification of the genomic region containing the endonuclease target site. The use of Terra PCR Direct Polymerase allows amplification directly from crude cell lysates without the need for genomic DNA purification (Figure 1, step 1). The resulting PCR pool of DNA fragments, containing different mutations at the target site, are cloned into a pUC19 vector using In-Fusion Cloning, a ligation-free cloning system (Figure 1, step 2). After introduction into optimized Stellar competent cells, colony PCR is used to amplify the inserts (Figure 1, step 3). Finally, DNA sequencing of the amplified inserts is used to identify indels (Figure 1, step 4).

Workflow for the Guide-it Indel Identification kit

Figure 1. Workflow for the Guide-it Indel Identification Kit

Knockout of AcGFP1 using CRISPR/Cas9 genome editing

CRISPR/Cas9 genome editing technology was applied to disrupt a single copy of AcGFP1 integrated in the genome of HT1080 cells (HT1080-AcGFP1). These cells exhibit strong green fluorescence (Figure 2, red trace). Therefore, AcGFP1 knockout can be assessed by monitoring GFP expression by flow cytometry. In cells that were co-transfected with two plasmids, one expressing Cas9 and the other expressing an sgRNA targeting AcGFP1, a significant percentage of the population (67%) lost GFP expression, due to mutation of the AcGFP1-encoding gene (Figure 2).

Flow cytometry analysis of HT1080-AcGFP1 cells.

Figure 2. Flow cytometry analysis of HT1080-AcGFP1 cells. Cells were analyzed before (red line) and after (green) transfection with plasmids encoding Cas9 and an AcGFP1-targeting sgRNA.

The different indels created at the AcGFP1 locus in the cell population were identified using the Guide-it Indel Identification Kit (according to the protocol in Figure 1). Cells (2 x 105) from the transfected cell population were collected and used directly as a template for PCR amplification of the genomic AcGFP1-encoding gene targeted by Cas9/sgRNA. The amplified genomic DNA fragments (Figure 3, lane 1) contain a mixture of the different indels that occurred via NHEJ repair at the AcGFP1 locus following double strand breakage.

The PCR products were cloned into a pre-linearized pUC19 vector using In-Fusion Cloning. Eight of the resulting bacterial clones were selected for colony PCR using Terra PCR Direct Polymerase with primers that amplified the insert. The amplified DNA was analyzed on an agarose gel, and all colonies showed a band of the correct size (Figure 4).

Flow cytometry analysis of HT1080-AcGFP1 cells.

Figure 3. PCR product amplified from the Cas9 sgRNA target sequence. Lane M: Marker; Lane 1: Amplified AcGFP1 target site (* indicates location of PCR product). 

Flow cytometry analysis of HT1080-AcGFP1 cells.

Figure 4. Agarose gel of colony PCR products from eight clones. Lane M: Marker; Lane 1-8: Individual clones.

The PCR products were sequenced using the provided sequencing primers. The obtained DNA sequence was aligned with the wild-type AcGFP1 sequence (Figure 4). The sequences showed a high rate of an inserted "T" at the Cas9/sgRNA cleavage site in the different clones. One clone had a four nucleotide deletion immediately upstream of the PAM site. Only one clone contained the wild-type AcGFP1 sequence (Figure 5).

Figure 6. Sequencing results of the AcGFP1 target sequences obtained from eight different clones.

Figure 5. Sequencing results of the AcGFP1 target sequences obtained from eight different clones.

Disruption of CD81 using CRISPR/Cas9 genome editing

CD81 is a membrane receptor expressed in most cell types. Using a FITC-tagged antibody against CD81, expression can be monitored by flow cytometry (Figure 6).

Figure 7. Flow cytometry analysis of HeLa cells, labeled with and without an anti-CD81-FITC antibody.

Figure 6. Flow cytometry analysis of HeLa cells, labeled with and without an anti-CD81-FITC antibody.

The CD81 gene was targeted for CRISPR/Cas9 genome editing by transfecting HeLa cells with two plasmids encoding Cas9 and a CD81-targeting sgRNA, respectively. Five days after transfection the cells were harvested, labeled with an anti-CD81-FITC antibody, and analyzed by flow cytometry (Figure 7). The analysis indicated that CD81 expression was lost in approximately 51% of the cell population.

Figure 8. Flow cytometry analysis of HeLa cells labeled with the anti-CD81-FITC antibody after transfection with Cas9 and sgRNA targeting the CD81 gene.

Figure 7. Flow cytometry analysis of HeLa cells labeled with the anti-CD81-FITC antibody after transfection with Cas9 and sgRNA targeting the CD81 gene.

The Guide-it Indel Identification Kit was used to characterize the nature of the indels created by Cas9/sgRNA in the cell population. Cells from the same population analyzed in Figure 6, which contained CD81 expressing and non-expressing cells, were used as template for direct PCR amplification of the targeted CD81 genomic site (Figure 8).

After cloning the PCR products, six bacterial clones were picked for colony PCR amplification of the CD81 target sequence using Terra PCR Direct Polymerase. The amplified DNA was analyzed on an agarose gel, and all colonies showed a band of the correct size (Figure 9).

Figure 9. PCR products from amplification of the targeted CD81 site from the cell population analyzed in Figure 7. 

Figure 8. PCR products from amplification of the targeted CD81 site from the cell population analyzed in Figure 6. Lane M: Marker; Lane 1: Amplified CD81 target site (* indicates location of PCR product). 

Figure 10. Agarose gel of colony PCR products directly from six clones.

Figure 9. Agarose gel of colony PCR products directly from six clones. Lane M: Marker; Lane 1-6: Individual clones.

The amplified PCR products were sequenced using the provided sequencing primer, and the sequencing data were aligned to the wild-type CD81 sequence (Figure 10). The obtained sequencing data from the different clones showed a wide variety of deletions and insertions at the targeted CD81 gene, emphasizing the variation in the outcome of NHEJ repair between individual cells.

Figure 11. Sequence analysis of six clones obtained from cells transfected with Cas9/sgRNA targeting the CD81 gene.

Figure 10. Sequence analysis of six clones obtained from cells transfected with Cas9/sgRNA targeting the CD81 gene.

Learn more about the Guide-it Indel Identification Kit »

Related Products

Cat. # Product Size Price License Quantity Details
631444 Guide-it™ Indel Identification Kit 10 Rxns USD $508.00

The Guide-it Indel Identification Kit is used for characterization of insertions and deletions (indels) generated by gene editing tools, such as CRISPR/Cas9. This kit contains all of the components needed to amplify, clone, and prepare modified target sites for DNA sequence analysis. This kit uses Terra PCR Direct to amplify targets directly from crude genomic DNA extracts. The resulting pool of fragments, which may contain a variety of indels, are cloned into a prelinearized pUC19 vector using the In-Fusion cloning system. Colony PCR of individual clones using Terra PCR Direct followed by DNA sequencing allows indel characterization.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data Resources

Back

Identification of insertions and deletions (indels) in the CD81 gene after CRISPR/Cas9 targeting

Identification of insertions and deletions (indels) in the CD81 gene after CRISPR/Cas9 targeting
Identification of insertions and deletions (indels) in the CD81 gene after CRISPR/Cas9 targeting. HeLa cells were transfected with plasmids encoding Cas9 and an sgRNA targeting the CD81 gene. The Guide-it Indel Identification Kit was used to prepare CD81 target sites for DNA sequence analysis. The sequencing data from six clones was aligned with the wild-type sequence, revealing a broad range of indels in the CD81 gene.

Back

The Guide-it Indel Identification Kit provides a complete workflow for identifying the variety of insertions and deletions (indels) introduced by nuclease-based genome editing

The Guide-it Indel Identification Kit provides a complete workflow for identifying the variety of insertions and deletions (indels) introduced by nuclease-based genome editing

The Guide-it Indel Identification Kit provides a complete workflow for identifying the variety of insertions and deletions (indels) introduced by nuclease-based genome editing. The protocol uses direct PCR to amplify a genomic DNA fragment (~500 to 700 bp) containing the target site directly from crude cell lysates (step 1). The resulting amplified fragments contain a pool of edited target sites from individual cells. These PCR products are cloned directly into a pre-linearized pUC19 vector using the In-Fusion Cloning system (step 2). After transformation of an optimized E. coli strain, colony PCR is used to amplify the target site from the plasmid (step 3). DNA sequencing is then used to identify the different indels generated at the targeted genomic site (step 4)

Back

631444: Guide-it Indel Identification Kit

631444: Guide-it Indel Identification Kit

Back

The CRISPR/Cas9 system, a simple, RNA-programmable method to mediate genome editing in mammalian cells

The CRISPR/Cas9 system, a simple, RNA-programmable method to mediate genome editing in mammalian cells

The CRISPR/Cas9 system, a simple, RNA-programmable method to mediate genome editing in mammalian cells. The CRISPR/Cas9 system relies on a single guide RNA (sgRNA) directing the Cas9 endonuclease to induce a double strand break at a specific target sequence three base-pairs upstream of a PAM sequence in genomic DNA. This DNA cleavage can be repaired in one of two ways: 1) nonhomologous end joining, (NHEJ) resulting in gene knockout due to error-prone repair (orange), or 2) homology-directed repair (HDR), resulting in gene knockin due to the presence of a homologous repair template (purple).


Gene editing resources

Product finder

Use this gene editing product finder to quickly locate kits for screening, delivery, and downstream assays.

CRISPR tools and information

What is CRISPR/Cas9? Need help designing the best guide RNAs? Learn all this and more.

Genome-wide library screening

Learn how to conduct a CRISPR/Cas9 guide RNA library phenotypic screen and view data demonstrating the use of our library.

CRISPR/Cas9 knockouts

Technotes and tools used to create or study CRISPR-Cas9-mediated gene knockouts (indels).

CRISPR/Cas9 knockins

Information, technotes and tools used to create or study gene knockouts by CRISPR/Cas9 and HDR.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us