We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to FAQs and tips
  • Positive and negative controls in scRNA-seq
  • DNA-seq FAQs
  • ChIP-seq FAQs
  • Indexing FAQs
  • TCR-seq methods: Q&A
Technical notes View data for this product
Technical notes
View data on low cell number ChIP-seq
Product page DNA SMART ChIP-Seq Kit product page
Home › Learning centers › Next-generation sequencing › FAQs and tips › ChIP-seq FAQs

Next-generation sequencing

  • Product line overview
  • RNA-seq
    • Automated library prep
    • Technologies and applications
      • SMART technology
      • Single-cell mRNA-seq
      • Total RNA-seq
      • SMART-Seq PLUS solutions
    • Technotes
      • Enabling long-read RNA sequencing from low-input samples
      • Singular for low input total RNA seq
      • All-in-one cDNA synthesis and library prep from single cells
      • Automation-friendly, all-in-one cDNA synthesis and library prep
      • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
      • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
      • Full-length mRNA-seq for target capture
      • Stranded libraries from single cells
      • Stranded libraries from picogram-input total RNA (v3)
      • Stranded libraries from 100 pg-100 ng total RNA
      • Stranded libraries from 100 ng - 1 ug total RNA
      • Stranded libraries from FFPE inputs (v2)
      • Nonstranded libraries from FFPE inputs
      • Singular and Takara Bio library prep
      • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
    • Webinars
      • Pushing the limits of sensitivity for single-cell applications
      • Capturing biological complexity by high-resolution single-cell genomics
      • Taking single-cell RNA-seq by STORM
      • STORM-seq Q&A
      • Neural multiomics Q&A
      • Liver metabolic function, dissecting one cell at a time
      • Pushing the limits Q&A
      • Total RNA sequencing of liquid biopsies
      • Liver metabolic function Q&A
      • Automating full-length single-cell RNA-seq libraries
      • Single-cell whole transcriptome analysis
      • Sensitivity and scale for neuron multiomics
    • RNA-seq tips
    • RNA-seq FAQs
  • Technical notes
    • DNA-seq
      • Next-gen WGA method for CNV and SNV detection from single cells
      • Low-input whole-exome sequencing
      • DNA-seq from FFPE samples
      • Low cell number ChIP-seq using ThruPLEX DNA-Seq
      • Detection of low-frequency variants using ThruPLEX Tag-Seq FLEX
      • ThruPLEX FLEX outperforms NEBNext Ultra II
      • Streamlined DNA-seq from challenging samples
      • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
      • ThruPLEX FLEX data sheet
      • Low-volume DNA shearing for ThruPLEX library prep
      • NGS library prep with enzymatic fragmentation
      • Comparing ThruPLEX FLEX EF to Kapa and NEBNext
    • Immune Profiling
      • Track B-cell changes in your mouse model
      • Efficient and sensitive profiling of human B-cell receptor repertoire
      • TCRv2 kit validated for rhesus macaque samples
      • Improved TCR repertoire profiling from mouse samples (bulk)
      • TCR repertoire profiling from mouse samples (bulk)
      • BCR repertoire profiling from mouse samples (bulk)
      • Improved TCR repertoire profiling from human samples (bulk)
      • TCR repertoire profiling from human samples (single cells)
      • BCR repertoire profiling from human samples (bulk)
    • Epigenetic sequencing
      • ChIP-seq libraries for transcription factor analysis
      • ChIP-seq libraries from ssDNA
      • Full-length small RNA libraries
      • Methylated DNA-seq with MBD2
    • Reproductive health technologies
      • Embgenix ESM Screen
      • Embgenix PGT-A
  • Technology and application overviews
    • Embgenix GT-omics Oncology Tech Note
    • Sequencing depth for ThruPLEX Tag-seq
    • Whole genome amplification from single cells
  • FAQs and tips
    • Positive and negative controls in scRNA-seq
    • DNA-seq FAQs
    • ChIP-seq FAQs
    • Indexing FAQs
    • TCR-seq methods: Q&A
  • DNA-seq protocols
    • Using UMIs with ThruPLEX Tag-Seq FLEX
    • Targeted capture with Agilent SureSelectQXT
    • Exome capture with Illumina Nextera Rapid Capture
    • Targeted capture with Roche NimbleGen SeqCap EZ
    • Targeted capture with IDT xGen panels
    • Targeted capture with Agilent SureSelectXT
    • Targeted capture with Agilent SureSelectXT2
  • Bioinformatics resources
    • Cogent NGS Analysis Pipeline
      • Cogent NGS Analysis Pipeline notices
    • Cogent NGS Discovery Software
      • Cogent NGS Discovery Software notices
    • Cogent NGS Immune Profiler
      • Cogent NGS Immune Profiler Software notices
    • Cogent NGS Immune Viewer
    • Embgenix Analysis Software
    • SMART-Seq DE3 Demultiplexer
  • Webinars
    • Harnessing the power of full-length transcriptome analysis for biomarker discoveries
    • SMART-Seq Pro kits for biomarker detection
    • Takara Bio Single-Cell Workshop, Spring 2021
    • Single-Cell Workshop at 2020 NextGen Omics Series UK
    • Immunogenomics to accelerate immunotherapy
    • MeD-Seq, a novel method to detect DNA methylation
    • Single-cell DNA-seq
  • Posters
    • Long-read mRNA-seq poster
New products
Need help?
Contact Sales
Technical notes View data for this product
Technical notes
View data on low cell number ChIP-seq
Product page DNA SMART ChIP-Seq Kit product page

ChIP-seq FAQs

What is the ChIP Elute Kit? Why would I want to use it?

The ChIP Elute Kit allows for DNA elution from Protein A/G agarose or magnetic beads and cross-linking reversal in a single step. This kit is significantly faster and more convenient than traditional methods. The ChIP Elute Kit takes only one hour (including DNA purification), while traditional methods make take up to overnight. Since single-stranded DNA (ssDNA) is produced using the ChIP Elute method, this method is appropriate for ChIP experiments that are followed by qPCR, or ChIP-seq experiments if using a DNA SMART ChIP-Seq Kit (which are fully compatible with ssDNA inputs). Using the ChIP Elute method in combination with the DNA SMART ChIP-Seq Kit makes ChIP-seq less tedious and time-consuming.

Are ChIP-seq results the same whether I use the standard method or the ChIP Elute Kit?

Yes. Sequencing libraries generated from DNA eluted with either the ChIP Elute Kit or traditional methods show comparable sequencing metrics.

Should I clean up my ChIP DNA prior to library preparation?

Yes. The ChIP Elute Kit includes column-based DNA purification and concentration. ChIP DNA prepared using this kit is directly compatible with the DNA SMART ChIP-Seq Kit without further purification.

    • If you use another method for cross-linking reversal and DNA elution, we recommend the NucleoSpin Gel and PCR Clean-Up kit along with Buffer NTB (available separately; Cat. # 740595.150), which is specially formulated to accommodate samples with high SDS concentrations.

Note: If your DNA is single-stranded, you will need to use Buffer NTC (Cat. # 740654.100) with the NucleoSpin Gel and PCR Clean-Up kit.

I am using ChIP to look at histone modifications with only 10,000 cells. Will the ChIP Elute and DNA SMART ChIP-Seq kits work with such a small input?

Yes. We have analyzed DNA from H3K4me3 pull-downs using 10,000–1 million cells, using the ChIP Elute Kit at the end of our ChIP workflow followed by a DNA SMART ChIP-Seq Kit. We obtained a reasonable yield from 10,000 cells using 18 PCR cycles.

Do I need to treat my samples with RNase prior to library preparation?

No. Residual RNases in the sample may compromise the success of library preparation. Furthermore, the terminal deoxynucleotidyl transferase will not use RNA as a template in the T-tailing step, and the use of a poly(dA) primer, instead of a poly(dT) primer, makes priming to RNA unlikely.

What size fragments can the DNA SMART ChIP-Seq Kit accommodate?

DNA fragments longer than 100 bp can be used with the DNA SMART ChIP-Seq Kit. If desired, fragments several kb in length can easily be amplified; however, this kit has been tested specifically with ChIP DNA fragments ranging from 100 to 500 bp (with an average of 200–400 bp). The PCR cycling guidelines in the DNA SMART ChIP-Seq User Manual are based on DNA fragments in this range. If your DNA is substantially longer or shorter, the optimal number of PCR cycles will need to be determined empirically.

Why are size selection and cleanup not performed before the PCR step as in other kits?

In ligation-based kits, a pre-PCR cleanup step is required to remove adapter dimers. The DNA SMART ChIP-Seq Kit does not use ligation, and high-quality ChIP-seq libraries can be obtained without size selection. However, specific applications such as identification of transcription factor binding sites may benefit from stringent size selection. We have found that pre-PCR size selection reduces the complexity of the final library, with increased PCR duplicates (see our tech note for more information). Our single-tube workflow allows for size selection and cleanup following the PCR step, and our protocol provides guidance for more or less stringent size selection. We have found that the basic protocol (Option 1) removes larger PCR fragments (that do not cluster well) without compromising library complexity.

How much sequence is added to my samples in the final library?

Together, the DNA SMART Oligo, DNA SMART Poly(dA) Primer, and the Indexing Primers for Illumina add 153 bp to the initial DNA fragment length.

Why don’t I see anything when I run the libraries on an agarose gel?

We do not recommend running the final libraries on an agarose gel. To minimize biases, ChIP-seq libraries (as well as other types of next-generation sequencing libraries) should not be overamplified. The low concentration of the final library makes visualization on agarose gels very difficult. Instead, we recommend quantifying the libraries with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific) with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Cat. # Q32851 and Q32854). To evaluate library quality, run 1 µl of the library on an Agilent 2100 Bioanalyzer using the High Sensitivity DNA Kit (Agilent, Cat. # 5067-4626).

Note: For optimal resolution, if the library concentration is >2 ng/µl, dilute the library in water or Library Elution Buffer to a concentration of 1–2 ng/µl prior to running on the Agilent Bioanalyzer.

What library yield should I expect?

Our guidelines typically result in a final library yield of >5 ng/µl (>20–25 nM). Lower yield (2–3 ng/µl) may be typical for very low inputs (100 pg), but is still enough for sequencing. If you obtain >25 ng/µl, consider reducing the number of cycles to minimize potential biases.

Where are the indexes in the final ChIP-seq libraries?

Indexed adapters for Illumina sequencing are present in the PCR primers used to amplify the ChIP-seq library. The Index 1 (i7) sequence is found on the Reverse PCR Primer HT while the Index 2 (i5) sequence is found on the Forward PCR Primer HT. When selecting settings for sequencing, HT indexes should be used. The specific sequence of the indexes on these primers is the same as the standard Illumina HT indexes, and can also be found in the DNA SMART ChIP-Seq Kit User Manual.

Overview of template switching in the DNA SMART ChIP-Seq Kit. The Index 1 (i7) sequence (indicated in yellow) is found on the Reverse PCR Primer HT while the Index 2 (i5) sequence (indicated in pink) is found on the Forward PCR Primer HT.

Overview of template switching in the DNA SMART ChIP-Seq Kit. The Index 1 (i7) sequence (indicated in yellow) is found on the Reverse PCR Primer HT while the Index 2 (i5) sequence (indicated in pink) is found on the Forward PCR Primer HT.

Which indexes are included in the DNA SMART ChIP-Seq kits?

There are three versions of the DNA SMART ChIP-Seq Kit. They all contain PCR primers with indexes identical to those in the Illumina TruSeq DNA HT Sample Prep Kit. Forward PCR Primers contain the i5 index, and Reverse PCR Primers contain the i7 index.

  • The 12-reaction kit (Cat. # 634865) includes 1 forward primer (with an index identical to D502) and 12 reverse primers (with indexes identical to D701–D712)
  • The 48-reaction kit A (Cat. # 634866) includes 4 forward primers (with indexes identical to D501–D504) and 12 reverse primers (with indexes identical to D701–D712)
  • The 48-reaction kit B (Cat. # 634867) includes 4 forward primers (with indexes identical to D505–D508) and 12 reverse primers (with indexes identical to D701–D712)

Together, the DNA SMART ChIP-Seq Kit - 48 A and the DNA SMART ChIP-Seq Kit - 48 B can be used to generate libraries incorporating all 96 high-throughput Illumina indexes. The nucleotide sequences for the indexes can be found in the DNA SMART ChIP-Seq Kit User Manual.

How many samples can I multiplex per run?

ChIP-seq libraries generated with the DNA SMART ChIP-Seq Kit contain adapters and indexes for Illumina sequencing. There are three versions of this kit that allow production of either 12 or 48 indexed libraries. It is also possible to use both versions of the 48-reaction kit (the DNA SMART ChIP-Seq Kit - 48 A and B) to generate the full 96 high-throughput Illumina indexes. Not all indexes can be pooled together; consult the Illumina literature (such as the "TruSeq® DNA Sample Preparation Guide") for appropriate pooling guidelines. If needed, compare the index sequences in the DNA SMART ChIP-Seq Kit User Manual with Illumina adapter sequences.

Can I do paired-end sequencing with the DNA SMART ChIP-Seq Kit?

Single-end sequencing with Read 1 is generally sufficient for ChIP-seq. However, if paired-end sequencing is desired, you should use the DNA SMART Custom Read2 Seq Primer provided in the kit (if your sequencing facility accepts custom primers). The custom primer can be used on an Illumina MiSeq® instrument or sent along with your samples to your sequencing facility for a HiSeq® run.

Do I need to trim my reads before mapping?

You should trim three nucleotides from the 5' end of your reads (Read 1). Optionally, you may also trim Illumina adapter sequences and stretches of poly(T), particularly if you read more than 50 nucleotides, as sequences from short inserts will contain the T-tail that is added in the library construction process.

Some of my sequences (Read 1) have a poly(T) stretch at their 3' ends: what does this mean?

The lower limit of the AMPure bead size selection is not a perfect cutoff; a small proportion of the PCR products in the final library may have short inserts. In these cases, the sequencing from Read 1 will read through the T-tail added during library synthesis.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us