We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Applications and technical notes
  • In-Fusion Cloning applications collection
  • Efficient multiple-fragment cloning
  • Mutagenesis with In-Fusion Cloning
  • Rapid, high-throughput cloning for antibody development
  • Solve a synthesis challenge with easy multiple-insert cloning
  • Direct cloning into large vectors
  • Simplified insertion of a GFP-encoding cassette into a 100-kb plasmid
  • Efficient cloning for sgRNA/Cas9 plasmids
  • In-Fusion Cloning of sgRNAs
  • De novo insertion of small fusion protein tags
High-throughput cloning products High-throughput cloning products
Primer Design Tool Primer design tool
In-Fusion Cloning Interest Sign up for In-Fusion updates and promotions
Home › Learning centers › Cloning › Applications and technical notes › Rapid, high-throughput cloning for antibody development

Cloning

  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
    • In-Fusion Cloning overview
    • In-Fusion Cloning guide
    • In-Fusion Cloning and competition
      • In-Fusion Snap Assembly vs. GeneArt Gibson Assembly HiFi
      • In-Fusion Snap Assembly vs. NEBuilder HiFi
      • Sequence accuracy in seamless cloning
      • Choosing a seamless cloning method
      • Improving background over Gibson Assembly
      • A successful alternative to ligation cloning
      • Single- and multiple-insert cloning
      • Easy cloning into lentiviral vectors
      • Outperforming TOPO cloning
    • In-Fusion Cloning citations
    • Stellar Competent Cells product overview and performance data
    • EcoDry reagents and sustainability
  • Primer design and other tools
    • Seamless cloning primer design
    • In-Fusion Cloning tutorials
      • Cloning one or more fragments
      • Deleting a sequence
      • Inserting a sequence
      • Deleting and replacing a sequence
    • In-Fusion molar ratio calculator
    • Simulate your construct
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
    • In-Fusion Cloning applications collection
    • Efficient multiple-fragment cloning
    • Mutagenesis with In-Fusion Cloning
    • Rapid, high-throughput cloning for antibody development
    • Solve a synthesis challenge with easy multiple-insert cloning
    • Direct cloning into large vectors
    • Simplified insertion of a GFP-encoding cassette into a 100-kb plasmid
    • Efficient cloning for sgRNA/Cas9 plasmids
    • In-Fusion Cloning of sgRNAs
    • De novo insertion of small fusion protein tags
  • Sign up to stay updated
  • Traditional molecular cloning
    • Restriction enzyme overview
      • General information about restriction enzymes
      • Star activity of restriction enzymes
      • Inactivation of restriction enzymes
      • Buffer activity with restriction enzymes
      • Universal buffers for double digestion with restriction enzymes
      • Restriction enzymes affected by methylation
      • Methylation-sensitive restriction enzymes
      • QC of restriction enzymes
    • Ligation cloning overview
    • Ligation product guide
  • In-Fusion Cloning webinars
New products
Need help?
Contact Sales
High-throughput cloning products High-throughput cloning products
Primer Design Tool Primer design tool
In-Fusion Cloning Interest Sign up for In-Fusion updates and promotions
Tech Note

A rapid, high-throughput cloning workflow for antibody development

Data kindly provided by: Jared L. Spidel, Morphotek, Inc.*

  • Generating monoclonal antibodies requires efficient and rapid protocols for cloning, expression, and screening
  • Traditional cloning methods are hampered by lengthy protocols, low efficiency, and reading frame complications
  • In-Fusion technology saves time with a streamlined, highly accurate method adaptable to high-throughput workflows

Featured products: ♦ In‑Fusion Cloning kits for HTP workflows ♦ Stellar Competent Cells ♦ Cloning Enhancer

Introduction Results Conclusions Methods References

Introduction  

Monoclonal antibodies (mAbs) are a growing class of therapeutic agents used for targeted treatment of cancer and neurodegenerative diseases, among other conditions. Therefore, the development of methods to efficiently and rapidly clone, express, and screen mAbs is crucial, as the initial screening process can involve thousands of mAbs. Workflows that involve isolating cDNAs from variable regions of individual B cells and then cloning those regions into expression vectors have grown in popularity. While this method requires just a single round of cloning, use of traditional cloning and expression protocols can limit the number of antibodies being generated.

Traditional cloning presents several constraints which limit its scalability for higher-throughput workflows: low ligase efficiency (especially with larger DNA fragments), nucleotide scars, lack of directionality, and laborious vector and/or insert preparation. While low ligase efficiency and multistep fragment preparation can lengthen the overall workload by a few days, nucleotide scars and lack of directionality pose more serious problems, with the desired insert being cloned out of frame or in the wrong orientation, respectively. In general, these traditional methods add significant amounts of time to experimental setup and colony screening. Scaling up a workflow also means magnifying its potential problems and troubleshooting efforts. Minimizing such issues is critical for moving into applications that require thousands of clones.

In-Fusion Cloning is a ligation-free, highly efficient technology which lets researchers avoid the bottlenecks found when working within the constraints of traditional cloning. This seamless cloning method facilitates fast, accurate cloning of any PCR fragment(s) into any destination vector, with a success rate of over 95% for single-insert cloning. Background is low, and cloning is always directional, relying on homologous recombination between vector and insert to create final constructs. The speed and simplicity of the In-Fusion Cloning protocol, paired with the confidence in its results, makes the system easily adaptable to high-throughput workflows.

The workflow figure here shows just one basic example of how In-Fusion technology can be scaled up for cloning in 96-well plates, either manually or with automation platforms. While this workflow includes our recommended step of plating transformed cells to ensure a clonal population, in the study detailed below, researchers at Morphotek, Inc. found they were able to skip this step entirely. With the high accuracy of In-Fusion Cloning at their disposal, they developed their own high-throughput process for the rapid generation of antibodies, further streamlining the workflow with an alternative outgrowth method (Spidel, J.L. et al. 2016).

high-throughput workflow for seamless cloning

Results  

A streamlined, semi-clonal workflow

Having previously evaluated other cloning methods, Spidel et al. chose In-Fusion Cloning for its simplicity and high percentage of positive clones, a clear advantage over traditional restriction digests and ligation. In-Fusion technology also allowed them to create seamless clones, something they could not achieve with Gateway cloning.

The percentage of positive clones was consistently higher than we see when using traditional restriction digestion/ligation. That allowed us to streamline our process and increase our throughput by eliminating the plating step following transformation. Since most all plasmids contain the insert, we can grow the transformed bacteria as a pool and directly miniprep."

—Jared L. Spidel, Morphotek, Inc.

Variable region cDNA was amplified from RNA isolated from B cells. PCR primers were designed so that amplification products contained 15-bp ends homologous to the ends of the destination vector. This homology facilitates the In-Fusion Cloning reaction, which was then employed to clone these inserts into their linearized vector backbone. Because In-Fusion technology requires no downstream manipulation of PCR-amplified inserts, they were able to scale up this cloning process to multiple 96-well plates.

The researchers noted high cloning efficiency and "little to no background," which allowed them to altogether eliminate the plating step following transformation, and simply grow a semi-clonal pool directly from transformation outgrowth. Typically, screening for individual recombinant clones is the most time-consuming part of this process, but In-Fusion Cloning gave them the confidence that they were proceeding with the right clone, and could thus avoid the large bottleneck in the workflow. The authors validated this approach to ensure they were recovering the desired inserts. This method would not have been feasible with traditional ligation cloning due to low efficiency and the extra DNA manipulation steps required for such methods reliant on restriction digests.

Conclusions  

With the increased demand for high-throughput methods to facilitate the rapid generation of monoclonal antibodies, accurate and streamlined cloning technology is an extremely valuable asset for researchers developing ways to scale up their work. In-Fusion Cloning is a natural fit, providing efficiency and speed in seamless cloning, enabling researchers to develop custom workflows for downstream applications and be confident in the results.

Methods  

Variable (V)-region cDNAs were amplified by RT-PCR from RNA isolated from B cells, with primers containing 15 bp at the 5' ends that were homologous to the signal sequence, or constant (C) region. In-Fusion HD Cloning was used to clone the V-region cDNA inserts into their linearized C-region vectors. Following transformation, 50 µl of each transformation outgrowth pool was added to 1 ml of TB in a 96-well deep-well plate and shaken overnight. Resulting cultures were processed for plasmid extraction, and DNA was sequenced to confirm the presence of the desired inserts. To determine the efficiency of the In-Fusion Cloning reaction, glycerol stocks were streaked out and colony PCR was performed on isolated colonies.

For full method details, see the publication below.

References  

Spidel, Jared L., et al. Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells. Journal of Immunological Methods 439 (2016).

*Jared Spidel's testimonial is based on his opinions and not those of Morphotek, Inc./Eisai Inc.; he is not being compensated by Takara Bio for providing the testimonial.

Related Products

Cat. # Product Size Price License Quantity Details
638943 In-Fusion® Snap Assembly Master Mix 500 Rxns Inquire for Quotation *

In-Fusion Snap Assembly Master Mix is designed for fast, directional cloning of one or more fragments of DNA into any vector. This proprietary master mix fuses DNA fragments (e.g., PCR-generated sequences and linearized vectors) efficiently and precisely by recognizing a 15-bp overlap at their ends. This 15-bp overlap can be engineered into the primers designed for PCR amplification of the desired sequences. In Fusion Snap Assembly Master Mix offers high efficiency, even for applications that can be challenging, including the cloning of long fragments, short oligonucleotides, and multiple fragments.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

638943: In-Fusion Snap Assembly Master Mix

638943: In-Fusion Snap Assembly Master Mix

Back

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR.

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR.

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR. A single 3.8-kb insert (Panel A) or a 34.2-kb adenovirus insert (Panel B) was cloned into a 2.7-kb vector which was linearized via inverse PCR. These cloning reactions were performed in triplicate with both In-Fusion Snap Assembly and NEBuilder HiFi. Primers were designed according to the manufacturers' specifications. After transformation and plating, 20 colonies from each replicate were analyzed by Sanger sequencing (for the 3.8-kb insert) or colony PCR (for the adenovirus insert) to determine the cloning accuracy. In-Fusion Snap Assembly yielded 2X more colonies than NEBuilder HiFi.

Back

The In-Fusion cloning protocol

The In-Fusion cloning protocol

The In-Fusion cloning protocol.

638944 In-Fusion® Snap Assembly Master Mix 1,000 Rxns Inquire for Quotation *

In-Fusion Snap Assembly Master Mix is designed for fast, directional cloning of one or more fragments of DNA into any vector. This proprietary master mix fuses DNA fragments (e.g., PCR-generated sequences and linearized vectors) efficiently and precisely by recognizing a 15-bp overlap at their ends. This 15-bp overlap can be engineered into the primers designed for PCR amplification of the desired sequences. In Fusion Snap Assembly Master Mix offers high efficiency, even for applications that can be challenging, including the cloning of long fragments, short oligonucleotides, and multiple fragments.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR.

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR.

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR. A single 3.8-kb insert (Panel A) or a 34.2-kb adenovirus insert (Panel B) was cloned into a 2.7-kb vector which was linearized via inverse PCR. These cloning reactions were performed in triplicate with both In-Fusion Snap Assembly and NEBuilder HiFi. Primers were designed according to the manufacturers' specifications. After transformation and plating, 20 colonies from each replicate were analyzed by Sanger sequencing (for the 3.8-kb insert) or colony PCR (for the adenovirus insert) to determine the cloning accuracy. In-Fusion Snap Assembly yielded 2X more colonies than NEBuilder HiFi.

Back

638944: In-Fusion Snap Assembly Master Mix

638944: In-Fusion Snap Assembly Master Mix

Back

The In-Fusion cloning protocol

The In-Fusion cloning protocol

The In-Fusion cloning protocol.

638949 In-Fusion® Snap Assembly Master Mix 250 Rxns USD $2979.00

In-Fusion Snap Assembly Master Mix is designed for fast, directional cloning of one or more fragments of DNA into any vector. This proprietary master mix fuses DNA fragments (e.g., PCR-generated sequences and linearized vectors) efficiently and precisely by recognizing a 15-bp overlap at their ends. This 15-bp overlap can be engineered into the primers designed for PCR amplification of the desired sequences. In Fusion Snap Assembly Master Mix offers high efficiency, even for applications that can be challenging, including the cloning of long fragments, short oligonucleotides, and multiple fragments.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR.

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR.

Performance comparison between In-Fusion Snap Assembly and NEBuilder HiFi using inverse PCR. A single 3.8-kb insert (Panel A) or a 34.2-kb adenovirus insert (Panel B) was cloned into a 2.7-kb vector which was linearized via inverse PCR. These cloning reactions were performed in triplicate with both In-Fusion Snap Assembly and NEBuilder HiFi. Primers were designed according to the manufacturers' specifications. After transformation and plating, 20 colonies from each replicate were analyzed by Sanger sequencing (for the 3.8-kb insert) or colony PCR (for the adenovirus insert) to determine the cloning accuracy. In-Fusion Snap Assembly yielded 2X more colonies than NEBuilder HiFi.

Back

638949: In-Fusion Snap Assembly Master Mix

638949: In-Fusion Snap Assembly Master Mix

Back

The In-Fusion cloning protocol

The In-Fusion cloning protocol

The In-Fusion cloning protocol.

638953 In-Fusion® Snap Assembly EcoDry™ Master Mix with Competent Cells 96 Rxns USD $1633.00

The In-Fusion Snap Assembly EcoDry Master Mix with Competent Cells enables high-efficiency, high-fidelity, directional cloning of one or more PCR fragments into any vector. The cornerstone of In-Fusion Cloning technology is Takara Bio’s proprietary In-Fusion master mix, which fuses DNA fragments (e.g., PCR-generated sequences and linearized vectors) efficiently and precisely by recognizing a 15-bp overlap at their ends. This 15-bp overlap can be engineered by designing primers for amplification of the desired sequences. The In-Fusion Snap Assembly Master Mix offers high cloning efficiency, especially for longer fragments, short oligonucleotides, and multiple fragments. It is provided in a convenient, lyophilized (dry) format. In addition to the cloning kit, this package includes Stellar™ Competent Cells, an E. coli HST08 strain that provides high transformation efficiency paired with blue-white screening capability when used with pUC plasmid vectors.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

The In-Fusion cloning protocol

The In-Fusion cloning protocol

The In-Fusion cloning protocol.

Back

638953: In-Fusion Snap Assembly EcoDry Master Mix with Competent Cells

638953: In-Fusion Snap Assembly EcoDry Master Mix with Competent Cells
638956 In-Fusion® Snap Assembly EcoDry™ Master Mix 96 Rxns USD $1270.00

The In-Fusion Snap Assembly EcoDry Master Mix enables high-efficiency, high-fidelity, directional cloning of one or more PCR fragments into any vector. The cornerstone of In-Fusion Cloning technology is Takara Bio’s proprietary In-Fusion master mix, which fuses DNA fragments (e.g., PCR-generated sequences and linearized vectors) efficiently and precisely by recognizing a 15-bp overlap at their ends. This 15-bp overlap can be engineered by designing primers for amplification of the desired sequences. The In-Fusion Snap Assembly Master Mix offers high cloning efficiency, especially for longer fragments, short oligonucleotides, and multiple fragments. It is provided in a convenient, lyophilized (dry) format.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

The In-Fusion cloning protocol

The In-Fusion cloning protocol

The In-Fusion cloning protocol.

Back

638956: In-Fusion Snap Assembly EcoDry Master Mix

638956: In-Fusion Snap Assembly EcoDry Master Mix

*You must be logged in to a Purchasing Account in order to purchase these products online, since the purchase of these products may be restricted depending on your account type. Researchers at not-for-profit accounts receive a limited use license with their purchase of the product. Researchers at for-profit accounts must obtain a license prior to purchase. For details please contact licensing@takarabio.com.


High-throughput plasmid purification

Streamline your plasmid purification workflow

NucleoSpin 96 Plasmid & NucleoSpin 96 Plasmid Transfection-grade

  • Time-saving parallel isolation of plasmid DNA from up to 5 ml of bacterial culture per prep
  • Protocol can be fully automated on liquid-handling platforms using vacuum processing
  • Innovative MN Wash Plate minimizes risk of cross contamination
  • Transfection-grade kit includes novel buffer technology for efficient endotoxin removal
Standard Transfection grade

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us