We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Technology and application overviews
  • Embgenix GT-omics Oncology Tech Note
  • Sequencing depth for ThruPLEX Tag-seq
  • Whole genome amplification from single cells
Using UMTs in NGS experiments Blog post: Using UMIs in NGS experiments
Home › Learning centers › Next-generation sequencing › Technology and application overviews › Sequencing depth for ThruPLEX Tag-seq

Next-generation sequencing

  • Product line overview
  • RNA-seq
    • Automated library prep
    • Technologies and applications
      • SMART technology
      • Single-cell mRNA-seq
      • Total RNA-seq
      • SMART-Seq PLUS solutions
    • Technotes
      • Enabling long-read RNA sequencing from low-input samples
      • Singular for low input total RNA seq
      • All-in-one cDNA synthesis and library prep from single cells
      • Automation-friendly, all-in-one cDNA synthesis and library prep
      • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
      • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
      • Full-length mRNA-seq for target capture
      • Stranded libraries from single cells
      • Stranded libraries from picogram-input total RNA (v3)
      • Stranded libraries from 100 pg-100 ng total RNA
      • Stranded libraries from 100 ng - 1 ug total RNA
      • Stranded libraries from FFPE inputs (v2)
      • Nonstranded libraries from FFPE inputs
      • Singular and Takara Bio library prep
      • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
    • Webinars
      • Pushing the limits of sensitivity for single-cell applications
      • Capturing biological complexity by high-resolution single-cell genomics
      • Taking single-cell RNA-seq by STORM
      • STORM-seq Q&A
      • Neural multiomics Q&A
      • Liver metabolic function, dissecting one cell at a time
      • Pushing the limits Q&A
      • Total RNA sequencing of liquid biopsies
      • Liver metabolic function Q&A
      • Automating full-length single-cell RNA-seq libraries
      • Single-cell whole transcriptome analysis
      • Sensitivity and scale for neuron multiomics
    • RNA-seq tips
    • RNA-seq FAQs
  • Technical notes
    • DNA-seq
      • Next-gen WGA method for CNV and SNV detection from single cells
      • Low-input whole-exome sequencing
      • DNA-seq from FFPE samples
      • Low cell number ChIP-seq using ThruPLEX DNA-Seq
      • Detection of low-frequency variants using ThruPLEX Tag-Seq FLEX
      • ThruPLEX FLEX outperforms NEBNext Ultra II
      • Streamlined DNA-seq from challenging samples
      • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
      • ThruPLEX FLEX data sheet
      • Low-volume DNA shearing for ThruPLEX library prep
      • NGS library prep with enzymatic fragmentation
      • Comparing ThruPLEX FLEX EF to Kapa and NEBNext
    • Immune Profiling
      • Track B-cell changes in your mouse model
      • Efficient and sensitive profiling of human B-cell receptor repertoire
      • TCRv2 kit validated for rhesus macaque samples
      • Improved TCR repertoire profiling from mouse samples (bulk)
      • TCR repertoire profiling from mouse samples (bulk)
      • BCR repertoire profiling from mouse samples (bulk)
      • Improved TCR repertoire profiling from human samples (bulk)
      • TCR repertoire profiling from human samples (single cells)
      • BCR repertoire profiling from human samples (bulk)
    • Epigenetic sequencing
      • ChIP-seq libraries for transcription factor analysis
      • ChIP-seq libraries from ssDNA
      • Full-length small RNA libraries
      • Methylated DNA-seq with MBD2
    • Reproductive health technologies
      • Embgenix ESM Screen
      • Embgenix PGT-A
  • Technology and application overviews
    • Embgenix GT-omics Oncology Tech Note
    • Sequencing depth for ThruPLEX Tag-seq
    • Whole genome amplification from single cells
  • FAQs and tips
    • Positive and negative controls in scRNA-seq
    • DNA-seq FAQs
    • ChIP-seq FAQs
    • Indexing FAQs
    • TCR-seq methods: Q&A
  • DNA-seq protocols
    • Using UMIs with ThruPLEX Tag-Seq FLEX
    • Targeted capture with Agilent SureSelectQXT
    • Exome capture with Illumina Nextera Rapid Capture
    • Targeted capture with Roche NimbleGen SeqCap EZ
    • Targeted capture with IDT xGen panels
    • Targeted capture with Agilent SureSelectXT
    • Targeted capture with Agilent SureSelectXT2
  • Bioinformatics resources
    • Cogent NGS Analysis Pipeline
      • Cogent NGS Analysis Pipeline notices
    • Cogent NGS Discovery Software
      • Cogent NGS Discovery Software notices
    • Cogent NGS Immune Profiler
      • Cogent NGS Immune Profiler Software notices
    • Cogent NGS Immune Viewer
    • Embgenix Analysis Software
    • SMART-Seq DE3 Demultiplexer
  • Webinars
    • Harnessing the power of full-length transcriptome analysis for biomarker discoveries
    • SMART-Seq Pro kits for biomarker detection
    • Takara Bio Single-Cell Workshop, Spring 2021
    • Single-Cell Workshop at 2020 NextGen Omics Series UK
    • Immunogenomics to accelerate immunotherapy
    • MeD-Seq, a novel method to detect DNA methylation
    • Single-cell DNA-seq
  • Posters
    • Long-read mRNA-seq poster
New products
Need help?
Contact Sales
Using UMTs in NGS experiments Blog post: Using UMIs in NGS experiments

ThruPLEX Tag-seq: how deep should I sequence?

Confident minor allele frequency detection

When using ThruPLEX Tag-seq in your research, you may have questions about how deep you need to sequence to detect the Minor Allele Frequency (MAF) of interest. In order to determine the detectable MAF, there are several factors to consider, including input amount, depth of sequencing, and capture panel size. ThruPLEX Tag-seq provides confident MAF detection by including 16 million unique molecular tags (UMTs) to label each DNA molecule. Using the UMTs, bioinformatics software groups the duplicates into amplification families and constructs a consensus sequence, thus reducing false positives.

Input amount

Input amount plays a critical role in MAF. An appropriate input amount should be selected to ensure that an adequate number of copies of the variant in question is present for detection. Table I indicates the input amount, total haploid genome copies, and total variant copies available for library preparation at various allele frequencies. Note that the number of copies available for detection will be lower than the number shown, as there is loss during the library preparation and enrichment process.

Table 1. Estimated genome copies available for library preparation
Input amount Total haploid genome copies* Total variant copies at the indicated allele frequency
5% 1% 0.5%
50 ng 16,666 833 166 83
30 ng 10,000 500 100 50
10 ng 3,333 166 33 16
5 ng 1,666 83 16 8
1 ng 333 16 3 1

*Calculated using 3 pg as the mass of a haploid genome. The genomic complexity of plasma samples is highly variable. All numbers are rounded down to the nearest whole number.

Sequencing depth

Another factor that affects detection sensitivity is sequencing depth. Generally, to detect lower MAFs, a greater amount of sequencing is required. ThruPLEX Tag-seq uses UMTs to bioinformatically group duplicates into amplification families. An amplification family size of 8–10 reads is recommended for maximum specificity, but can be changed based on experimental needs (Kennedy et al. 2014).

In order to estimate the amount of sequencing needed to detect the MAF desired, the number of unique molecules required to make a variant call must be determined. For example, for an allele frequency of 1%, if three unique molecules are required to make a variant call and each amplification family has approximately 10 reads, then you would need to sequence to roughly 3,000X coverage. Table II and equation below can be used as a reference.

Sequencing depth = (number of unique variants required to make a variant call ÷ allele frequency) x (approximate number of reads in each amplification family)

For example: (3 ÷ 0.01) x 10 = 3,000X coverage required

Table 2. Estimated mean raw sequencing depth required*
Minimum number of unique molecules to make a variant call Allele frequency
5% 1% 0.5%
3 600X 3,000X 6,000X
5 1,000X 5,000X 10,000X
10 2,000X 10,000X 20,000X

*Raw sequencing depth includes all reads prior to removal of duplicates. This is calculated using a target peak amplification family size of 10 reads per unique molecule.

Target enrichment

One way to decrease the amount of sequencing needed is to perform target enrichment using hybrid capture. Targeted panels enrich the genes of interest, which decreases the total amount of bases needing coverage. Additional major considerations of hybrid capture, then, are the desired coverage (AKA sequencing depth), the size of the target panel, the sequencing read length, and the fraction of on-target reads (defined as reads mapping to your target of interest). The following equation provides an estimate for the number of reads required for each sample:

Millions of reads required = (coverage x target panel size [in mb]) ÷ (read length x on-target fraction)

Example using 150-bp paired-end reads: (600 x 5) ÷ (300 x 0.50) = 20 million reads required

Important factors to consider

Input amount, depth of sequencing, and capture panel size are all factors to consider when determining MAF, and here we have provided several guidelines for designing your Tag-seq experiments. Additionally, it is important to note that other factors such as sample quality and your choice of data processing algorithms may play a role.

References

Kennedy, S. et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nature Protocols 9, 2586–2606 (2014).


See what our customers are saying about ThruPLEX Tag-seq technology!

"ThruPLEX Tag-seq was easy to use with its simple and straightforward protocol. The unique molecular tags reduced the false positive variant calls and enabled accurate detection of true mutations present at low frequencies."
—Jinglan Zhang, Ph.D., Technical Director for NGS, BAYLOR MIRACA GENETICS LABORATORIES

DNA-seq protocols:

User-generated DNA target enrichment protocols for ThruPLEX kits

Currently featuring protocols for integrating ThruPLEX kits with leading target enrichment systems.

View protocols


Related Products

Cat. # Product Size Price License Quantity Details
R400584 ThruPLEX® Tag-seq 6S (12) Kit 12 Rxns USD $907.00

License Statement

ID Number  
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337, 11,072,823 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
384 This product is protected by U.S. Patents 7,803,550, 8,399,199; 9,598,727, 10,196,686, 10,208,337, and 10,155,942 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
448 This product is sold under license from Becton Dickinson and Company and is covered by one or more of the following US Patent Nos. 8,835,358; 9,290,808; 9,290,809; 9,315,857; 9,708,659; 9,816,137; 9,845,502; 10,047,394; 10,059,991; 10,202,646; 10,392,661; 10,619,203; and pending U.S. patent applications 16/551,638 and 16/846,133.

The ThruPLEX Tag-seq Kit includes all necessary reagents for generating and multiplexing DNA-seq libraries with the incorporation of Unique Molecular Indexes (UMIs), and includes 6 unique single index PCR primer sets. Once purified and quantified, the resulting library is ready for Illumina NGS instruments using standard Illumina sequencing reagents and protocols. Only 50 pg to 50 ng of fragmented double-stranded DNA is required for library preparation. The entire three-step workflow takes place in a single tube or well in about two hours. No intermediate purification steps or sample transfers are necessary, preventing handling errors and loss of valuable samples. This kit includes reagents sufficient for 12 reactions with 6 single-index primer sets.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

R400584: ThruPLEX Tag-seq 6S (12) Kit

R400584: ThruPLEX Tag-seq 6S (12) Kit
R400585 ThruPLEX® Tag-seq 48S Kit 48 Rxns USD $2944.00

License Statement

ID Number  
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337, 11,072,823 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
384 This product is protected by U.S. Patents 7,803,550, 8,399,199; 9,598,727, 10,196,686, 10,208,337, and 10,155,942 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
448 This product is sold under license from Becton Dickinson and Company and is covered by one or more of the following US Patent Nos. 8,835,358; 9,290,808; 9,290,809; 9,315,857; 9,708,659; 9,816,137; 9,845,502; 10,047,394; 10,059,991; 10,202,646; 10,392,661; 10,619,203; and pending U.S. patent applications 16/551,638 and 16/846,133.

The ThruPLEX Tag-seq Kit includes all necessary reagents for generating and multiplexing DNA-seq libraries with the incorporation of Unique Molecular Indexes (UMIs), and includes 48 unique single index PCR primer sets. Once purified and quantified, the resulting library is ready for Illumina NGS instruments using standard Illumina sequencing reagents and protocols. Only 50 pg to 50 ng of fragmented double-stranded DNA is required for library preparation. The entire three-step workflow takes place in a single tube or well in about two hours. No intermediate purification steps or sample transfers are necessary, preventing handling errors and loss of valuable samples. This kit includes reagents sufficient for 48 reactions with 48 single-index primer sets.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

R400585: SMARTer ThruPLEX Tag-seq 48S Kit

R400585: SMARTer ThruPLEX Tag-seq 48S Kit
R400586 ThruPLEX® Tag-seq 96D Kit 96 Rxns USD $5166.00

License Statement

ID Number  
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337, 11,072,823 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
384 This product is protected by U.S. Patents 7,803,550, 8,399,199; 9,598,727, 10,196,686, 10,208,337, and 10,155,942 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
448 This product is sold under license from Becton Dickinson and Company and is covered by one or more of the following US Patent Nos. 8,835,358; 9,290,808; 9,290,809; 9,315,857; 9,708,659; 9,816,137; 9,845,502; 10,047,394; 10,059,991; 10,202,646; 10,392,661; 10,619,203; and pending U.S. patent applications 16/551,638 and 16/846,133.

The ThruPLEX Tag-seq Kit includes all necessary reagents for generating and multiplexing DNA-seq libraries with the incorporation of Unique Molecular Indexes (UMIs), and includes 96 dual index PCR primer sets. Once purified and quantified, the resulting library is ready for Illumina NGS instruments using standard Illumina sequencing reagents and protocols. Only 50 pg to 50 ng of fragmented double-stranded DNA is required for library preparation. The entire three-step workflow takes place in a single tube or well in about two hours. No intermediate purification steps or sample transfers are necessary, preventing handling errors and loss of valuable samples. This kit includes reagents sufficient for 96 reactions with 96 dual-index primer sets.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

R400586: ThruPLEX Tag-seq 96D Kit

R400586: ThruPLEX Tag-seq 96D Kit

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us