We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Close

  • ‹ Back to Resin in FPLC cartridges
  • Cobalt resin—FPLC
  • Cobalt columns—FPLC
  • Nickel columns—FPLC
Protein research learning center
Home › Products › Protein research › Purification products › His-tagged protein purification › Resin in FPLC cartridges › Cobalt resin—FPLC

His-tagged protein purification

  • Bulk resins and gravity columns
    • Cobalt resin
    • Cobalt columns—gravity
    • Cobalt columns—spin
    • Cobalt resin—cell lysate
    • Nickel resin
    • Nickel columns—gravity
  • Resin in FPLC cartridges
    • Cobalt resin—FPLC
    • Cobalt columns—FPLC
    • Nickel columns—FPLC
  • Magnetic beads
    • Cobalt resin—magnetic
    • Nickel resin—magnetic
Need help?
Contact Sales
Protein research learning center

FPLC purification of his-tagged proteins—TALON Superflow Metal Affinity Resin

TALON his-tag purification resin lets you prepare exceptionally pure his-tagged proteins from bacterial, mammalian, yeast, and baculovirus-infected cells, under native or denaturing conditions. TALON is an immobilized metal affinity chromatography (IMAC) resin charged with cobalt, which binds to his-tagged proteins with higher specificity than nickel-charged resins. As a result, TALON resin delivers his-tagged proteins of the highest purity. In addition, each cobalt ion is bound to the resin at four sites, resulting in low metal-ion leakage.

TALON his-tag purification resin lets you prepare exceptionally pure his-tagged proteins from bacterial, mammalian, yeast, and baculovirus-infected cells, under native or denaturing conditions. TALON is an immobilized metal affinity chromatography (IMAC) resin charged with cobalt, which binds to his-tagged proteins with higher specificity than nickel-charged resins. As a result, TALON resin delivers his-tagged proteins of the highest purity. In addition, each cobalt ion is bound to the resin at four sites, resulting in low metal-ion leakage.

Reactive core contains cobalt for highest purity

TALON Superflow Metal Affinity Resin is complexed with cobalt ions that make it highly selective for his-tagged proteins. TALON’s cobalt-containing reactive core has strict spatial requirements—only proteins containing adjacent histidines or specially positioned, neighboring histidines are able to bind. The spatial requirements for nickel-based resins (e.g., Ni-NTA) are less strict—these resins have a much higher affinity for randomly positioned (i.e., non-his-tag) histidines. As a result, TALON resin binds more specifically to his-tagged proteins.

TALON Superflow Metal Affinity Resin is specifically designed for quick and effective purification of his-tagged proteins at high flow rates and medium pressure (up to 150 psi)—it’s ideal for FPLC applications. For prepacked 1 ml and 5 ml cartridges, please see the HisTALON Superflow Cartridge product page.

Uniform matrix guarantees less contamination

Cobalt-based resins have a more uniform structure than nickel-based resins. TALON resin contains negatively charged reactive sites that form three-dimensional pockets. Each pocket contains three carboxyl groups and one nitrogen atom that collectively bind a single, positively charged cobalt ion—an arrangement that allows the cobalt ion to bind to two adjacent histidine residues. In this configuration, cobalt is bound very tightly and does not leach out of the resin. Nickel-based resins are less homogeneous in structure because nickel ions can form two different coordination complexes: one of which forms a three-dimensional pocket similar to that of the TALON ligand, and a second that forms a planar (flat) structure. In the distorted, planar structure, each nickel ion binds to only two carboxyl groups and one nitrogen atom. As a result, the planar structure binds the nickel ions less tightly, allowing them to leach from the resin. TALON Metal Affinity Resin, with its uniform matrix, provides high affinity binding under a variety of purification conditions, ensuring optimal protein purification.

 More  Less
Cat. # Product Size License Quantity Details
635670 TALON® Superflow Metal Affinity Resin 250 mL USD $2553.00

Cobalt-based immobilized metal affinity chromatography (IMAC) resin for the purification of recombinant his-tagged biomolecules under native or denaturing conditions. This resin permits one-step purification of his-tagged biomolecules under medium flow rates and pressures (up to 150 p.s.i.) for production-scale applications.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

FPLC purification of 6xHis-GFPuv with TALON Superflow

FPLC purification of 6xHis-GFPuv with TALON Superflow
FPLC purification of 6xHis-GFPuv with TALON Superflow. Nickel-NTA (Panel A) requires longer washing and lower flow rates to purify 6xHis- GFPuv than TALON Superflow Resin (Panel B). Protein was extracted in 50 mM sodium phosphate, 0.3 M NaCl, pH 7.0. Panel A.3.2 ml culture filtrate was loaded at 0.5 ml/min. Then nonadsorbed material was washed in the same buffer with 10 mM imidazole. Protein was eluted with 20 mM imidazole (Peak II) and 250 mM imidazole (Peak III). Panel B.3.2 ml culture filtrate was loaded at 1 ml/min. Then, nonadsorbed material was washed with the same extraction buffer and eluted with 150 mM imidazole (Peak II).

Back

SDS-PAGE of TALON CellThru Resin purified proteins

SDS-PAGE of TALON CellThru Resin purified proteins
SDS-PAGE of TALON CellThru Resin purified proteins. E. coli BL21 cells were sonicated in TALON wash buffer and run through a TALON CellThru column eluted in 150 mM imidazole. Note that some target protein is trapped in membrane fractions and does not get absorbed on the column. M: molecular weight marker.

Back

Native vs. denaturing purification procedures using TALON resin

Native vs. denaturing purification procedures using TALON resin
Native vs. denaturing purification procedures using TALON resin.

Back

Native purification with TALON resin preserves biological activity of proteins

Native purification with TALON resin preserves biological activity of proteins
Native purification with TALON resin preserves biological activity of proteins. Fresh cells (0.5 g) expressing 6xHis-GFPuv were extracted in 5 ml of 50 mM sodium phosphate; 0.3 M NaCl, pH 7.0 Panel A. Elution profile of GFP which was loaded, washed with the same buffer, and eluted with a step gradient of imidazole (150 mM). Panel B. Fractions were analyzed by SDS-PAGE. The fluorescent signal of green fluorescent protein (GFPuv) was completely enriched by TALON Superflow Resin.

Back

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin
Purification of 6xHis-GFPuv under denaturing conditions using TALON resin. The fusion protein was purified in 8 M urea using TALON resin. M=molecular weight markers.

Back

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol
Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol. N-terminal 6xHis-tagged mouse DHFR (19.5 kDa) was expressed in E. coli. 2 ml of lysate was purified using gravity flow on TALON resin in increasing concentrations of beta-mercaptoethanol. Even lanes: 20 μl of nonadsorbed material. Odd lanes: 5 μl of eluate

Back

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin
Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin. N-terminal 6xHis DHFR was expressed and purified under native conditions. Protein concentrations were determined by Bradford assay. Yields are expressed as a percentage of total protein in the cell lysate.

Back

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification
SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification. Purification with TALON Superflow resin requires less washing with exceptional results.

.

Back

635670: TALON Superflow Metal Affinity Resin

635670: TALON Superflow Metal Affinity Resin
635669 TALON® Superflow Metal Affinity Resin 2 x 250 mL USD $4336.00

TALON Superflow Metal Affinity Resin is a cobalt-based immobilized metal affinity chromatography (IMAC) resin for the purification of recombinant his-tagged biomolecules under native or denaturing conditions. This resin permits one-step purification of his-tagged biomolecules under medium flow rates and pressures (up to 150 p.s.i.) for production-scale applications.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

FPLC purification of 6xHis-GFPuv with TALON Superflow

FPLC purification of 6xHis-GFPuv with TALON Superflow
FPLC purification of 6xHis-GFPuv with TALON Superflow. Nickel-NTA (Panel A) requires longer washing and lower flow rates to purify 6xHis- GFPuv than TALON Superflow Resin (Panel B). Protein was extracted in 50 mM sodium phosphate, 0.3 M NaCl, pH 7.0. Panel A.3.2 ml culture filtrate was loaded at 0.5 ml/min. Then nonadsorbed material was washed in the same buffer with 10 mM imidazole. Protein was eluted with 20 mM imidazole (Peak II) and 250 mM imidazole (Peak III). Panel B.3.2 ml culture filtrate was loaded at 1 ml/min. Then, nonadsorbed material was washed with the same extraction buffer and eluted with 150 mM imidazole (Peak II).

Back

SDS-PAGE of TALON CellThru Resin purified proteins

SDS-PAGE of TALON CellThru Resin purified proteins
SDS-PAGE of TALON CellThru Resin purified proteins. E. coli BL21 cells were sonicated in TALON wash buffer and run through a TALON CellThru column eluted in 150 mM imidazole. Note that some target protein is trapped in membrane fractions and does not get absorbed on the column. M: molecular weight marker.

Back

Native vs. denaturing purification procedures using TALON resin

Native vs. denaturing purification procedures using TALON resin
Native vs. denaturing purification procedures using TALON resin.

Back

Native purification with TALON resin preserves biological activity of proteins

Native purification with TALON resin preserves biological activity of proteins
Native purification with TALON resin preserves biological activity of proteins. Fresh cells (0.5 g) expressing 6xHis-GFPuv were extracted in 5 ml of 50 mM sodium phosphate; 0.3 M NaCl, pH 7.0 Panel A. Elution profile of GFP which was loaded, washed with the same buffer, and eluted with a step gradient of imidazole (150 mM). Panel B. Fractions were analyzed by SDS-PAGE. The fluorescent signal of green fluorescent protein (GFPuv) was completely enriched by TALON Superflow Resin.

Back

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin
Purification of 6xHis-GFPuv under denaturing conditions using TALON resin. The fusion protein was purified in 8 M urea using TALON resin. M=molecular weight markers.

Back

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol
Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol. N-terminal 6xHis-tagged mouse DHFR (19.5 kDa) was expressed in E. coli. 2 ml of lysate was purified using gravity flow on TALON resin in increasing concentrations of beta-mercaptoethanol. Even lanes: 20 μl of nonadsorbed material. Odd lanes: 5 μl of eluate

Back

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin
Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin. N-terminal 6xHis DHFR was expressed and purified under native conditions. Protein concentrations were determined by Bradford assay. Yields are expressed as a percentage of total protein in the cell lysate.

Back

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification
SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification. Purification with TALON Superflow resin requires less washing with exceptional results.

.

Back

635669: TALON Superflow Metal Affinity Resin

635669: TALON Superflow Metal Affinity Resin
635668 TALON® Superflow Metal Affinity Resin 4 x 250 mL USD $7558.00

TALON Superflow Metal Affinity Resin is a cobalt-based immobilized metal affinity chromatography (IMAC) resin for the purification of recombinant his-tagged biomolecules under native or denaturing conditions. This resin permits one-step purification of his-tagged biomolecules under medium flow rates and pressures (up to 150 p.s.i.) for production-scale applications.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

FPLC purification of 6xHis-GFPuv with TALON Superflow

FPLC purification of 6xHis-GFPuv with TALON Superflow
FPLC purification of 6xHis-GFPuv with TALON Superflow. Nickel-NTA (Panel A) requires longer washing and lower flow rates to purify 6xHis- GFPuv than TALON Superflow Resin (Panel B). Protein was extracted in 50 mM sodium phosphate, 0.3 M NaCl, pH 7.0. Panel A.3.2 ml culture filtrate was loaded at 0.5 ml/min. Then nonadsorbed material was washed in the same buffer with 10 mM imidazole. Protein was eluted with 20 mM imidazole (Peak II) and 250 mM imidazole (Peak III). Panel B.3.2 ml culture filtrate was loaded at 1 ml/min. Then, nonadsorbed material was washed with the same extraction buffer and eluted with 150 mM imidazole (Peak II).

Back

SDS-PAGE of TALON CellThru Resin purified proteins

SDS-PAGE of TALON CellThru Resin purified proteins
SDS-PAGE of TALON CellThru Resin purified proteins. E. coli BL21 cells were sonicated in TALON wash buffer and run through a TALON CellThru column eluted in 150 mM imidazole. Note that some target protein is trapped in membrane fractions and does not get absorbed on the column. M: molecular weight marker.

Back

Native vs. denaturing purification procedures using TALON resin

Native vs. denaturing purification procedures using TALON resin
Native vs. denaturing purification procedures using TALON resin.

Back

Native purification with TALON resin preserves biological activity of proteins

Native purification with TALON resin preserves biological activity of proteins
Native purification with TALON resin preserves biological activity of proteins. Fresh cells (0.5 g) expressing 6xHis-GFPuv were extracted in 5 ml of 50 mM sodium phosphate; 0.3 M NaCl, pH 7.0 Panel A. Elution profile of GFP which was loaded, washed with the same buffer, and eluted with a step gradient of imidazole (150 mM). Panel B. Fractions were analyzed by SDS-PAGE. The fluorescent signal of green fluorescent protein (GFPuv) was completely enriched by TALON Superflow Resin.

Back

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin
Purification of 6xHis-GFPuv under denaturing conditions using TALON resin. The fusion protein was purified in 8 M urea using TALON resin. M=molecular weight markers.

Back

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol
Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol. N-terminal 6xHis-tagged mouse DHFR (19.5 kDa) was expressed in E. coli. 2 ml of lysate was purified using gravity flow on TALON resin in increasing concentrations of beta-mercaptoethanol. Even lanes: 20 μl of nonadsorbed material. Odd lanes: 5 μl of eluate

Back

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin
Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin. N-terminal 6xHis DHFR was expressed and purified under native conditions. Protein concentrations were determined by Bradford assay. Yields are expressed as a percentage of total protein in the cell lysate.

Back

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification
SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification. Purification with TALON Superflow resin requires less washing with exceptional results.

.

Back

635668: TALON Superflow Metal Affinity Resin

635668: TALON Superflow Metal Affinity Resin
635507 TALON® Superflow Metal Affinity Resin 100 mL USD $1137.00

Cobalt-based immobilized metal affinity chromatography (IMAC) resin for the purification of recombinant his-tagged biomolecules under native or denaturing conditions. This resin permits one-step purification of his-tagged biomolecules under medium flow rates and pressures (up to 150 p.s.i.) for production-scale applications.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

FPLC purification of 6xHis-GFPuv with TALON Superflow

FPLC purification of 6xHis-GFPuv with TALON Superflow
FPLC purification of 6xHis-GFPuv with TALON Superflow. Nickel-NTA (Panel A) requires longer washing and lower flow rates to purify 6xHis- GFPuv than TALON Superflow Resin (Panel B). Protein was extracted in 50 mM sodium phosphate, 0.3 M NaCl, pH 7.0. Panel A.3.2 ml culture filtrate was loaded at 0.5 ml/min. Then nonadsorbed material was washed in the same buffer with 10 mM imidazole. Protein was eluted with 20 mM imidazole (Peak II) and 250 mM imidazole (Peak III). Panel B.3.2 ml culture filtrate was loaded at 1 ml/min. Then, nonadsorbed material was washed with the same extraction buffer and eluted with 150 mM imidazole (Peak II).

Back

SDS-PAGE of TALON CellThru Resin purified proteins

SDS-PAGE of TALON CellThru Resin purified proteins
SDS-PAGE of TALON CellThru Resin purified proteins. E. coli BL21 cells were sonicated in TALON wash buffer and run through a TALON CellThru column eluted in 150 mM imidazole. Note that some target protein is trapped in membrane fractions and does not get absorbed on the column. M: molecular weight marker.

Back

Native vs. denaturing purification procedures using TALON resin

Native vs. denaturing purification procedures using TALON resin
Native vs. denaturing purification procedures using TALON resin.

Back

Native purification with TALON resin preserves biological activity of proteins

Native purification with TALON resin preserves biological activity of proteins
Native purification with TALON resin preserves biological activity of proteins. Fresh cells (0.5 g) expressing 6xHis-GFPuv were extracted in 5 ml of 50 mM sodium phosphate; 0.3 M NaCl, pH 7.0 Panel A. Elution profile of GFP which was loaded, washed with the same buffer, and eluted with a step gradient of imidazole (150 mM). Panel B. Fractions were analyzed by SDS-PAGE. The fluorescent signal of green fluorescent protein (GFPuv) was completely enriched by TALON Superflow Resin.

Back

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin
Purification of 6xHis-GFPuv under denaturing conditions using TALON resin. The fusion protein was purified in 8 M urea using TALON resin. M=molecular weight markers.

Back

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol
Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol. N-terminal 6xHis-tagged mouse DHFR (19.5 kDa) was expressed in E. coli. 2 ml of lysate was purified using gravity flow on TALON resin in increasing concentrations of beta-mercaptoethanol. Even lanes: 20 μl of nonadsorbed material. Odd lanes: 5 μl of eluate

Back

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin
Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin. N-terminal 6xHis DHFR was expressed and purified under native conditions. Protein concentrations were determined by Bradford assay. Yields are expressed as a percentage of total protein in the cell lysate.

Back

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification
SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification. Purification with TALON Superflow resin requires less washing with exceptional results.

.

Back

635507: TALON Superflow Metal Affinity Resin

635507: TALON Superflow Metal Affinity Resin
635506 TALON® Superflow Metal Affinity Resin 25 mL USD $335.00

Cobalt-based immobilized metal affinity chromatography (IMAC) resin for the purification of recombinant his-tagged biomolecules under native or denaturing conditions. This resin permits one-step purification of his-tagged biomolecules under medium flow rates and pressures (up to 150 p.s.i.) for production-scale applications.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

FPLC purification of 6xHis-GFPuv with TALON Superflow

FPLC purification of 6xHis-GFPuv with TALON Superflow
FPLC purification of 6xHis-GFPuv with TALON Superflow. Nickel-NTA (Panel A) requires longer washing and lower flow rates to purify 6xHis- GFPuv than TALON Superflow Resin (Panel B). Protein was extracted in 50 mM sodium phosphate, 0.3 M NaCl, pH 7.0. Panel A.3.2 ml culture filtrate was loaded at 0.5 ml/min. Then nonadsorbed material was washed in the same buffer with 10 mM imidazole. Protein was eluted with 20 mM imidazole (Peak II) and 250 mM imidazole (Peak III). Panel B.3.2 ml culture filtrate was loaded at 1 ml/min. Then, nonadsorbed material was washed with the same extraction buffer and eluted with 150 mM imidazole (Peak II).

Back

SDS-PAGE of TALON CellThru Resin purified proteins

SDS-PAGE of TALON CellThru Resin purified proteins
SDS-PAGE of TALON CellThru Resin purified proteins. E. coli BL21 cells were sonicated in TALON wash buffer and run through a TALON CellThru column eluted in 150 mM imidazole. Note that some target protein is trapped in membrane fractions and does not get absorbed on the column. M: molecular weight marker.

Back

Native vs. denaturing purification procedures using TALON resin

Native vs. denaturing purification procedures using TALON resin
Native vs. denaturing purification procedures using TALON resin.

Back

Native purification with TALON resin preserves biological activity of proteins

Native purification with TALON resin preserves biological activity of proteins
Native purification with TALON resin preserves biological activity of proteins. Fresh cells (0.5 g) expressing 6xHis-GFPuv were extracted in 5 ml of 50 mM sodium phosphate; 0.3 M NaCl, pH 7.0 Panel A. Elution profile of GFP which was loaded, washed with the same buffer, and eluted with a step gradient of imidazole (150 mM). Panel B. Fractions were analyzed by SDS-PAGE. The fluorescent signal of green fluorescent protein (GFPuv) was completely enriched by TALON Superflow Resin.

Back

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin

Purification of 6xHis-GFPuv under denaturing conditions using TALON resin
Purification of 6xHis-GFPuv under denaturing conditions using TALON resin. The fusion protein was purified in 8 M urea using TALON resin. M=molecular weight markers.

Back

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol

Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol
Native purification of 6xHis protein using TALON resin in the presence of beta-mercaptoethanol. N-terminal 6xHis-tagged mouse DHFR (19.5 kDa) was expressed in E. coli. 2 ml of lysate was purified using gravity flow on TALON resin in increasing concentrations of beta-mercaptoethanol. Even lanes: 20 μl of nonadsorbed material. Odd lanes: 5 μl of eluate

Back

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin

Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin
Protein purification yields in the presence of beta-mercaptoethanol with TALON resin compared to Ni-NTA resin. N-terminal 6xHis DHFR was expressed and purified under native conditions. Protein concentrations were determined by Bradford assay. Yields are expressed as a percentage of total protein in the cell lysate.

Back

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification

SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification
SDS-PAGE of FPLC fractions from 6xHis-GFPuv purification. Purification with TALON Superflow resin requires less washing with exceptional results.

.

Back

635506: TALON Superflow Metal Affinity Resin

635506: TALON Superflow Metal Affinity Resin

Overview

Choice of native or denaturing purification conditions

TALON Resin retains its protein binding specificity and yield under a variety of purification conditions. It is stable under both denaturing and native (nondenaturing) conditions. Deciding whether to use native or denaturing purification conditions depends on protein location, solubility, accessibility of the his tag, downstream applications, and preservation of biological activity.

  • Native conditions

    Purifying a protein under native conditions is the most efficient way to preserve its biological activity, but requires that the protein be soluble. Advantages include:

    • Eliminating the renaturation step at the end of the purification, saving time, and preventing significant loss of activity
    • Retaining the ability to copurify enzyme subunits, cofactors, and associated proteins
  • Denaturing conditions

    Because proteins that are overexpressed in prokaryotic systems sometimes form insoluble aggregates called inclusion bodies, you may need to purify proteins under denaturing conditions—using strong denaturants such as 6 M guanidinium or 8 M urea to enhance protein solubility. Advantages include:

    • Complete solubilization of inclusion bodies and his-tagged proteins
    • Improved binding to the matrix and reduced nonspecific binding, due to full exposure of the his tag
    His-tagged proteins purified under denaturing conditions can be used directly in subsequent applications, or may need to be renatured and refolded. Protein renaturation and refolding can be performed prior to elution from the column. However, yields of recombinant proteins will be lower than under native conditions, because urea and guanidinium molecules compete with histidines for binding to metal.

Use of reducing agents

Purification with TALON resin may be carried out in the presence of β-mercaptoethanol, but not DTT or DTE, to preserve reduced sulfhydryl (-SH) groups that are important for the biological activity and structure of a given protein. TALON provides higher yields than Ni-NTA in the presence of β-mercaptoethanol.

More Information

Features

  • Exhibits high affinity for his-tagged proteins
  • Ideal for FPLC applications
  • No copurification of proteins
  • Resists metal leakage
  • Performs well under a wide range of purification conditions

Applications

Purified recombinant his-tagged proteins can be used for:

  • Crystallography
  • Functional assays
  • Structural investigations
  • Other applications

Additional product information

Please see the product's Certificate of Analysis for information about storage conditions, product components, and technical specifications. Please see the Kit Components List to determine kit components. Certificates of Analysis and Kit Components Lists are located under the Documents tab.


Powered by Bioz See more details on Bioz
Powered by Bioz See more details on Bioz

Featured kits Reagent compatibility
Overviews Native vs denaturing purifications
Technical notes See the data: TALON resins

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2022 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2023 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • OEM
  • Capabilities and installations
  • OEM enzyme FAQs
  • Enzyme samples for commerical assay developers
  • OEM process
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • cDNA synthesis
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Diagnostic solutions
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Whole genome amplification
  • Immune profiling
  • Diagnostic solutions
  • Reproductive health
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • High-throughput qPCR solutions
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Single-cell cloning of edited hiPS cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Cell-free DNA purification kits
  • Microbiome
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Special offers
  • Free samples
  • TB Green qPCR sale
  • PrimeSTAR enzyme promo
  • Try BcaBEST DNA Polymerase ver.2.0
  • RNA purification sale
  • Capturem IP and Co-IP sale
  • Baculovirus titration kits early access program
  • NGS bundle and save
  • Free sample: PrimePath Direct Saliva SARS-CoV-2 Detection Kit
  • TALON his-tag purification resin special offer
  • GoStix Plus special offers
  • PCR samples
  • Services & Support
  • OEM
  • Instrument services
  • Stem cell services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Capabilities and installations
  • OEM enzyme FAQs
  • Enzyme samples for commerical assay developers
  • OEM process
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • cDNA synthesis
  • Real-time PCR
  • Nucleic acid purification
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Guest webinar: developing and validating molecular diagnostic tests
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • PCR
  • Citations
  • Selection guides
  • Technical notes
  • FAQ
  • Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • Vaccine development
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Webinar: Speeding up diagnostic development
  • Contact us
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • ESM Collection Kit forms
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Privacy request
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us