We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Technotes
  • Enabling long-read RNA sequencing from low-input samples
  • Singular for low input total RNA seq
  • All-in-one cDNA synthesis and library prep from single cells
  • Automation-friendly, all-in-one cDNA synthesis and library prep
  • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
  • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
  • Full-length mRNA-seq for target capture
  • Stranded libraries from single cells
  • Stranded libraries from picogram-input total RNA (v3)
  • Stranded libraries from 100 pg-100 ng total RNA
  • Stranded libraries from 100 ng - 1 ug total RNA
  • Stranded libraries from FFPE inputs (v2)
  • Nonstranded libraries from FFPE inputs
  • Singular and Takara Bio library prep
  • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
product page Visit the product page
Home › Learning centers › Next-generation sequencing › RNA-seq › Technotes › Stranded libraries from 100 ng - 1 ug total RNA

RNA-seq

  • Automated library prep
  • Technologies and applications
    • SMART technology
    • Single-cell mRNA-seq
    • Total RNA-seq
    • SMART-Seq PLUS solutions
  • Technotes
    • Enabling long-read RNA sequencing from low-input samples
    • Singular for low input total RNA seq
    • All-in-one cDNA synthesis and library prep from single cells
    • Automation-friendly, all-in-one cDNA synthesis and library prep
    • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
    • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
    • Full-length mRNA-seq for target capture
    • Stranded libraries from single cells
    • Stranded libraries from picogram-input total RNA (v3)
    • Stranded libraries from 100 pg-100 ng total RNA
    • Stranded libraries from 100 ng - 1 ug total RNA
    • Stranded libraries from FFPE inputs (v2)
    • Nonstranded libraries from FFPE inputs
    • Singular and Takara Bio library prep
    • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
  • Webinars
    • Pushing the limits of sensitivity for single-cell applications
    • Capturing biological complexity by high-resolution single-cell genomics
    • Taking single-cell RNA-seq by STORM
    • STORM-seq Q&A
    • Neural multiomics Q&A
    • Liver metabolic function, dissecting one cell at a time
    • Pushing the limits Q&A
    • Total RNA sequencing of liquid biopsies
    • Liver metabolic function Q&A
    • Automating full-length single-cell RNA-seq libraries
    • Single-cell whole transcriptome analysis
    • Sensitivity and scale for neuron multiomics
  • RNA-seq tips
  • RNA-seq FAQs
New products
Need help?
Contact Sales
product page Visit the product page
Tech Note

A complete solution for generating stranded RNA-seq libraries from high-input total RNA

  • Fast, efficient rRNA depletion and stranded library preparation
  • Reproducibility and consistency across replicates
  • High-quality, stranded data
  • Accurate results regardless of RNA quality
Introduction Results Conclusions Methods References

Introduction  

Streamlined methods provide the opportunities necessary to push each experiment to its fullest potential. By combining time-saving techniques with high-performance reagents, studies in transcriptomics can move forward efficiently and accurately. Expression analysis of the entire transcriptome by RNA-sequencing (RNA-seq) can reap great benefits from highly sensitive, versatile, and easy-to-use protocols. Traditionally, generation of RNA-seq libraries from total RNA has been challenged by the high amounts of ribosomal RNA (rRNA) in the starting material, and lengthy protocols required to incorporate platform-specific adaptors via ligation. The SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian is a unique solution for generating indexed cDNA libraries suitable for next-generation sequencing (NGS) on any Illumina platform, starting with 100 ng–1 µg of total mammalian RNA of any quality.

Results  

Fast, accurate technology for rRNA removal and library generation

Our SMARTer RNA-seq kits are based on the core SMART (Switching Mechanism at 5' End of RNA Template) technology (Chenchik et al. 1998), a streamlined process that maintains strand information, and also eliminates tedious library preparation by incorporating adaptors in reverse transcription and PCR steps. The strand-specific reverse transcription reaction maintains close to 99% accurate strand-of-origin information, allowing for the identification of overlapping transcripts and antisense transcripts. Sequencing-ready libraries are generated during PCR amplification of the cDNA, using primers containing Illumina cluster-generating sequences and indexes.

Total RNA can consist of ≥90% rRNA, making it important to remove rRNA from samples before generating RNA-seq libraries. The RiboGone technology incorporated in the protocol uses hybridization technology and RNase H digestion to bind and specifically deplete nuclear rRNA sequences (5S, 5.8S, 18S, and 28S), as well as mitochondrial rRNA sequences (12S) from human, mouse, or rat total RNA (Morlan, Qu, and Sinicropi 2012). By depleting the rRNA in samples prior to library generation, sequencing costs are lowered and mapping statistics are improved.

With the combined power of SMART and RiboGone technologies, the SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian enables you to go from total RNA to Illumina-compatible RNA-seq libraries in around five hours.

Generate Illumina-specific, stranded RNA-seq libraries in 5 hours from total RNA

Flowchart of SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian library generation. Panel A. Depletion of rRNA from total RNA samples with RiboGone technology. Panel B. First-strand cDNA synthesis with SMART technology, incorporating Illumina Read Primers 1 and 2. Panel C. Template switching and generation of sequencing libraries with Illumina cluster-generating sequences and indexes by PCR amplification.

Reproducible sequencing data

The SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian produces extremely reliable RNA-seq data. Two 100-ng samples of Human Universal Reference RNA (HURR; Agilent) were treated with this kit, and the data from the two resulting libraries were compared. The high correlation between them (R = 0.99) displays an impressive level of reproducibility and consistency across replicates.

High correlation of RNA-seq data between replicates

Reproducibility across replicates. RNA-seq libraries were generated from two samples of 100 ng of HURR. The scatterplot illustrates correlations between the FPKMs (Fragments Per Kilobase Of Exon Per Million Fragments Mapped) from the two libraries.

High-quality sequencing data

With the SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian system, researchers can generate RNA-seq libraries from a variety of samples, including HURR and HBRR (Human Brain Reference RNA; Ambion), starting from 100 ng–1 µg of total RNA. Using this kit, rRNA content was depleted from samples prior to cDNA synthesis and library generation. When sequenced, both the HURR and HBRR libraries yielded a high number of quality reads, with 88–94% mapped, 84–91% uniquely mapped, and approximately 17,600 genes identified. Additionally, based on the ERCC Spike-In RNA, strand information was maintained at about 99% for both samples. The benefits of rRNA depletion are clear, with less than 0.5% of reads from the HURR library and less than 6% of reads from the HBRR library mapped to rRNA.

Sequence alignment metrics
RNA source Human Universal Human Brain
Input amount 400 ng
Number of reads (millions) 8.5 (paired end reads)
Percentage of reads (%):
rRNA 0.3% 5.3%
Mapped to genome 94% 88%
Mapped uniquely to genome 91% 84%
Exonic 43% 50%
Intronic 43% 33%
Intergenic 14% 12%
Number of genes identified 17,570 17,600
Percentage of ERCC transcripts with correct strand 99.3% 98.8%


Sequence Alignment Metrics.
 400 ng of HURR and HBRR with ERCC Spike-In RNA were treated with this kit. Alignment data is displayed for both libraries, with the percentage of reads that mapped to rRNA, exonic regions, intronic regions, intergenic regions, and the correct strand, as defined by Picard analysis.

These same RNA-seq libraries, generated from HURR and HBRR samples, produced data that had a strong correlation (R = 0.927) with qPCR data for the same RNAs obtained through the MicroArray Quality Control (MAQC) analysis. This suggested that the RiboGone method of rRNA depletion and SMARTer cDNA synthesis and library preparation did not negatively affect the RNA-seq data and maintained exceptional accuracy.

MAQC analysis shows high accuracy and strong correlation with pPCR data

MAQC Analysis. RNA-seq libraries were generated with 400 ng of HURR and HBRR. The scatter plot shows the Log2 ratio of FPKMs of HURR/HBRR graphed against the Log2 of the ratio of HURR/HBRR derived from qPCR Taqman probes.

RNA-seq libraries produced with this kit provide an accurate representation of your sample. A 400-ng HBRR sample with ERCC (External RNA Controls Consortium) Spike-In RNA Mix (Life Technologies) was treated with this kit, and the libraries were sequenced, generating 8.5 million paired end reads. The FPKMs (Fragments Per Kilobase Of Exon Per Million Fragments Mapped) showed a strong correlation (R2 = 0.9199) and linearity (slope = 0.9988) to the input concentrations of the individual ERCC transcripts, indicating excellent accuracy and dynamic range.

ERCC spike-in data shows excellent accuracy and dynamic range

Dynamic range and linearity of RNA-seq data. Libraries were generated from Human Brain Reference RNA with ERCC Spike-In RNA Mix2. The above graph shows strong correlation between the Log2 of input concentrations of individual ERCC transcripts vs. the Log2 of FPKMs for those transcripts.

Reliable, accurate results across RNA inputs of varying quality

Libraries can be quickly and precisely generated from input RNA of a wide range of quality. Mouse Liver RNA was chemically sheared to a RIN (RNA Integrity Number) of either 3 or 7 (Mortazavi et al. 2008). Samples of each quality were used at both 100-ng and 1-µg levels and treated with this kit. All of the libraries generated from these samples had high mapping statistics with 81–88% mapped reads, 72–77% uniquely mapped reads, with over 12,000 genes identified. Stranded information of the biological RNA was maintained at high levels (95–98%), regardless of RIN value.

Sequence alignment metrics from RNA of varying quality
RNA source Mouse Liver
RNA quality (RIN) RIN 3 RIN 7
Input amount 100 ng 1 µg 100 ng 1 µg
Number of reads (millions) 1.7 (paired end reads)
Percentage of reads (%):
rRNA 2% 2% 1% 1%
Mapped to genome 82% 86% 81% 88%
Mapped uniquely to genome 73% 75% 72% 77%
Exonic 55% 53% 54% 54%
Intronic 32% 31% 33% 32%
Intergenic 12% 14% 12% 13%
Number of genes identified 12,079 12,172 12,099 12,212
Percent biological strandedness 95.5% 97.2% 95.6% 98.1%


High-quality libraries across varying levels of RNA quality.
 Libraries were generated from Mouse Liver RNA by chemical shearing until it had a RIN of 3 or 7. Sequencing data showed the percentage of reads that mapped to rRNA, exonic regions, intronic regions, intergenic regions, and the correct strand, as defined by Picard analysis.

The above data shows that the high reproducibility standards of this kit are not affected by the quality of input RNA. A comparison of data from the 1-µg libraries described above shows an extremely high correlation (R = 0.99), indicating the strong ability of the SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian kit to generate reliable, reproducible data across varying levels of RNA quality.

High quality, reproducible RNA-seq data from samples of varying RNA quality

Reproducibility across RNA quality. A scatterplot illustrates the correlations between the FPKMs from two libraries generated from 1 µg of Mouse Liver RNA that was chemically sheared until it had a RIN of 3 or 7.

Conclusions  

The SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian is a complete solution for preparing indexed Illumina sequencing libraries from 100 ng–1 µg of mammalian total RNA. This kit incorporates key RiboGone and SMART technologies, seamlessly blending abundant transcript (rRNA) removal and strand-specific library generation. SMART technology allows the addition of Illumina adaptors in a ligation-free manner, significantly reducing hands-on time while also increasing efficiency. The sequencing data obtained with this kit maintains high quality and reproducibility across sample replicates and RNA quality.

Methods  

Reproducibility across replicates:

Reproducibility across replicates was illustrated with two samples of 100 ng of Human Universal Reference RNA (Agilent), treated with SMARTer Stranded Total RNA Sample Prep Kit - HI Mammalian. The two replicates underwent the same protocol, except Replica #1 used 13 PCR cycles and Replica #2 used 14 PCR cycles. The libraries were sequenced at 1.3 million single end reads (1 x 50 bp) on an Illumina MiSeq® instrument, and aligned with STAR against hg19 with Ensembl annotation. 

MAQC and ERCC analysis:

The quality of sequencing data was demonstrated via MAQC analysis, dynamic range analysis, and sequence alignment metrics. For this purpose, RNA-seq libraries were generated from 400 ng of Human Universal Reference RNA (HURR; Agilent) and Human Brain Reference RNA (HBRR; Ambion) with ERCC Spike-In RNA, with Mix1 used for HURR and Mix2 used for HBRR. The libraries were sequenced at 8.5 million paired end reads (2 x 75 bp) on an Illumina MiSeq instrument, and aligned with STAR against hg19 with Ensembl annotation. The percentage of reads that mapped to rRNA, exonic regions, intronic regions, intergenic regions, and the correct strand were defined by Picard analysis. For MAQC analysis, the Log2 ratio of FPKMs from HURR/HBRR was graphed against the Log2 of the ratio of HURR/HBRR derived from qPCR Taqman probes. For the dynamic range study, the Log2 of input concentrations of individual ERCC transcripts was graphed against the Log2 of FPKMs for those transcripts in the HBRR sample. 

Library generation across RNA inputs of varying quality

To compare data across RNA quality, Mouse Liver RNA was chemically sheared until it had a RIN (RNA Integrity Number) of 3 or 7. Either 100 ng or 1 µg of each RIN was used with this kit to generate RNA-seq libraries. These libraries were sequenced at 1.7 million paired end reads (2 x 25 bp) on an Illumina MiSeq instrument, and aligned with STAR against mm10 with Ensembl annotation. The percentage of reads that mapped to rRNA, exonic regions, intronic regions, intergenic regions, and the correct strand were defined by Picard analysis. Correlations between the FPKMs of libraries generated from 1 µg of RNA with both RINs were illustrated in a scatterplot.

References  

Chenchik, A. et al. Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR. Gene cloning Anal. by RT-PCR 305–319 (1998).

Morlan, J. D., Qu, K. & Sinicropi, D. V. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLoS One 7, (2012). 

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).     

Related products

Cat. # Product Size Price License Quantity Details

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us