We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept

Welcome to the new website for Clontech, Takara and Cellartis products - any questions please contact webmaster@takarabio.com

Close
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Learning centers
  • Services & Support
  • About
  • Areas of interest

Close

  • ‹ Back to Single-cell RNA- and DNA-seq
  • Stranded libraries from single cells
  • Streamlined single-cell mRNA-seq
  • Single-cell mRNA-seq
  • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
  • Full-length mRNA libraries from single cells for Fluidigm C1 (SMART-Seq v4)
  • Full-length single-cell library method comparison
  • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
Home › Learning centers › Next-generation sequencing › Technical notes › Single-cell RNA- and DNA-seq › Stranded libraries from single cells

Technical notes

  • Single-cell RNA- and DNA-seq
    • Stranded libraries from single cells
    • Streamlined single-cell mRNA-seq
    • Single-cell mRNA-seq
    • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
    • Full-length mRNA libraries from single cells for Fluidigm C1 (SMART-Seq v4)
    • Full-length single-cell library method comparison
    • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
  • RNA-seq
    • Stranded libraries from picogram-input total RNA (v2)
    • Stranded libraries from FFPE inputs (v2)
    • Stranded libraries from 100 ng - 1 ug total RNA
    • Stranded libraries from 100 pg-100 ng total RNA
    • Stranded libraries from picogram-input total RNA (v1)
    • Stranded RNA-seq competitor kit comparison
    • Nonstranded libraries from FFPE inputs
    • Sensitive capture of full-length transcript information with targeted RNA-seq
  • DNA-seq
    • Low cell number ChIP-seq using SMARTer ThruPLEX
    • Cell-free DNA sequencing
    • Sequencing analysis of low-frequency mutations in cfDNA
    • DNA-seq from FFPE samples
    • Low-input whole-exome sequencing
    • Tag-seq variant detection
    • Low-volume DNA shearing for SMARTer ThruPLEX library prep
  • Immune profiling
    • TCR repertoire profiling from human samples (single cells)
    • TCR repertoire profiling from human samples (bulk)
    • TCR repertoire profiling from mouse samples (bulk)
    • BCR repertoire profiling from mouse samples (bulk)
  • Epigenetics and smRNA-seq
    • Full-length small RNA libraries
    • Accurate miRNA representation in microRNA-seq
    • ChIP-seq libraries from ssDNA
    • Methylated DNA-seq
New products
Need help?
Tech Note

High-quality stranded RNA-seq libraries from single cells using the SMART-Seq Stranded Kit

Product highlights:

  • Simple workflow starts directly from 1–1,000 cells or 10 pg–10 ng total RNA to generate sequencing-ready Illumina libraries in 7 hours
  • Unparalleled sensitivity for single-cell, full-length total RNA sequencing with strand-of-origin information
  • Reproducible, accurate detection of coding and noncoding transcripts from total RNA and single cells
  • Comparable results to our gold-standard single-cell RNA sequencing technology
  • Superior performance compared to competitors
Introduction Results Conclusions Methods

Introduction  

Our SMARTer NGS portfolio has long included high-performance, cutting-edge solutions for RNA sequencing (RNA-seq). With the growing need for low-input and single-cell NGS library prep solutions, we see that researchers recognize the value in revealing transcriptome profiles from damaged cells as well as noncoding information from single cells and extremely low cell numbers (1–1,000). While we have previously released several industry-leading products that push the limits of sensitivity and reproducibility in RNA-seq from ultra-low inputs as well as single cells (SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing and SMART-Seq HT Kit), they generate transcriptome profiles from mRNA only. Oligo(dT) priming is an efficient way to capture the transcriptome, with minimal uninformative reads (e.g., those from rRNA contamination), but it does not provide a complete view of the transcriptome, as only the polyadenylated fraction can be captured. In addition, for oligo(dT)-primed cDNA synthesis to generate high-quality libraries, one needs to start with high-quality, intact RNA, which excludes the use of this technology with samples damaged or degraded due to the method of isolation or the nature of processing (e.g., FFPE samples). Additionally, these earlier single-cell kits do not preserve stand-of-origin information. All of these factors motivated us to develop the SMART-Seq Stranded Kit, which allows for generation of stranded, sequencing-ready Illumina libraries directly from 1–1,000 cells or an equivalent amount (10 pg–10 ng) of purified total RNA of any quality. 

Simple workflow for generation of stranded libraries directly from single cells and total RNA

This kit integrates an innovative technology, already incorporated in our SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian, which enables removal of ribosomal cDNA following cDNA synthesis (Figure 1), as opposed to direct removal of corresponding rRNA molecules prior to reverse transcription. Indeed, since cDNA synthesis in the SMART-Seq Stranded Kit relies on random priming, rRNA is also captured and it is essential to remove the resulting cDNA prior to sequencing. The SMART-Seq Stranded Kit protocol can be completed in just 7 hours, and a convenient pooling option for inputs between one to ten cells facilitates greater ease of use by minimizing the number of samples to be handled.

Schematic of workflow for the SMART-seq Stranded Kit

Figure 1. Schematic of technology in the SMART-Seq Stranded Kit. SMART technology is used in a ligation-free protocol to preserve strand-of-origin information. Random priming allows the generation of cDNA from all RNA fragments in the sample, including rRNA. When the SMARTScribe Reverse Transcriptase (RT) reaches the 5' end of the RNA fragment, the enzyme's terminal transferase activity adds a few nontemplated nucleotides to the 3' end of the cDNA (shown as Xs). The carefully designed SMART-Seq Stranded Adapter base-pairs with the nontemplated nucleotide stretch, creating an extended template to enable the RT to continue replicating to the end of the oligonucleotide. The resulting cDNA contains sequences derived from the SMART scN6 Primer and the SMART-Seq Stranded Adapter. In the next step, a first round of PCR amplification (PCR 1) adds full-length Illumina adapters, including barcodes. The 5' PCR Primer binds to the SMART-Seq Stranded Adapter sequence (light purple), while the 3' PCR Primer binds to sequence associated with the SMART scN6 sequence (green). The ribosomal cDNA (originating from rRNA) is then cleaved by scZapR in the presence of the mammalian-specific scR-Probes. This process leaves the library fragments originating from non-rRNA molecules untouched, and available for enrichment in a second round of PCR amplification (PCR2) using primers universal to all libraries. An optional pooling of up to 12 samples after PCR 1 allows for greater ease of use by minimizing the number of samples to be processed downstream.

Results  

High-quality, stranded NGS libraries from 10 pg–10 ng total RNA

In order to test overall kit performance, we started with inputs ranging between 10 pg–10 ng of human brain total RNA. Sequencing alignment metrics for the resulting libraries were consistent across inputs, including exonic, intronic, and intergenic reads (Table I). Reproducibility between replicates was high at every input level, including the single-cell equivalent of 10 pg total RNA, as demonstrated by the high Pearson correlations between technical replicates. The data show that even within this single-cell input range, over 97% of the reads match the correct strand, as determined per biological annotation.

Sequencing alignment metrics for 10 pg–10 ng total RNA
RNA sourceHuman brain total RNA
Input amount (ng) 10 1 0.25 0.05 0.01
Number of reads (paired-end) 2,500,000 2,500,000 2,500,000 2,500,000 1,000,000
Number of transcripts >1 FPKM 15,128 15,097 15,066 14,394 13,151
Number of transcripts >0.1 FPKM 23,864 23,631 23,274 21,335 16,700
Pearson/Spearman correlations 0.99/0.87 0.99/0.85 0.99/0.82 0.97/0.68 0.92/0.46
Correct strand per biological annotation (%) 97.7 97.8 97.6 97.5 97.1
Proportion of reads (%):
Exonic 37.1 36.5 41.5 39.7 34.1
Intronic 36.1 35.6 36.7 35.4 30.6
Intergenic 8.6 8.5 8.8 8.7 7.4
rRNA 9.7 9.6 3.6 4.1 6.7
Mitochondrial 5.2 6.3 6.4 6.4 5.9
Overall mapping (%) 96.8 96.4 97.0 94.4 84.7
Duplicate rate (%) 13.3 20.2 35.2 59.0 62.4

Table I. Consistent sequencing metrics across RNA input amounts. Human brain total RNA (10 pg–10 ng) was used to generate RNA-seq libraries with the SMART-Seq Stranded Kit. Data shown are the average of three technical replicates and exhibit exceptionally high Pearson and Spearman correlations between replicates, even with as little as 10 pg of input material. Sequences were analyzed as described in the Methods.

Superior performance for ultra-low-input amounts of total RNA

When we compared the SMART-Seq Stranded Kit (Stranded) against the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Pico v2), we found similar performance across most of the Pico v2 input range (250 pg–10 ng total RNA; Figure 2A). However, below 1 ng, the SMART-Seq Stranded kit identifies more unique reads (fewer duplicates) than the Pico v2 kit, which correlates to a higher number of transcripts identified. This is most obvious for inputs of 250 pg and 50 pg, for which up to 920 additional transcripts with an FPKM >1 were detected using the Stranded kit. In addition, a considerably higher number of low-abundance transcripts were identified with the SMART-Seq Stranded kit. For those with an FPKM >0.1, 572 more transcripts were found with the 500-pg input, while as many as 2,289 more transcripts were found with the 50-pg input.

Reproducibility with the SMART-Seq Stranded Kit was also shown to be higher for inputs below 500 pg, as evidenced by the tighter correlations for 50-pg inputs (Figure 2B; Pearson of 0.97 for the SMART-Seq Stranded kit, compared to 0.92 for the Pico v2 kit). Additionally, we can see in Figure 2B that for the SMART-Seq Stranded kit, the transcripts identified in only one of the replicates (dropouts) are restricted to expression levels close to or below 10 FPKM, while in the Pico v2 kit, a higher proportion of the dropouts are >10 FPKM. Taken together, these data indicate that the SMART-Seq Stranded Kit outperforms the Pico v2 kit when starting with less than 500 pg of total RNA.

Superior performance of the SMART-Seq Stranded kit versus the Pico v2 kit

Figure 2. The SMART-Seq Stranded Kit outperforms the Pico v2 kit for ultra-low inputs. Panel A. Human brain total RNA (50 pg–10 ng) was used to generate RNA-seq libraries in triplicate with the SMART-Seq Stranded Kit (Stranded) and the Pico v2 kit. For both kits, sequencing data were down-sampled to 2.5 million paired-end reads prior to analysis. Panel B. Comparison of transcript expression level from libraries generated with 50 pg of total RNA (as shown in Panel A). FPKM values are shown on a log10 scale. Transcripts represented in only one sample (dropouts) can be seen along the X- and Y-axes of the scatter plots.

High reproducibility with inputs ranging from 1 to 1,000 cells

The SMART-Seq Stranded Kit was developed specifically to directly accommodate cells as input, as opposed to only purified total RNA. Kit performance with cells was verified by generating libraries from 1–1,000 cells (Figure 3). For comparison, total RNA samples were purified from aliquots of 1,000 cells and processed in parallel with the cell inputs. Sequencing alignment metrics for the resulting libraries were consistent across all inputs, including reads mapping to exons, introns, intergenic regions, mitochondrial sequences, and rRNA (Figure 3A). Importantly, proportions of reads mapping to introns and intergenic regions were similar for cells and purified RNA, indicating that gDNA contamination is not a concern for library preparation directly from intact cells. In contrast, we observed that compromised (dead) cells exhibit very low exonic mapping and very high intergenic mapping (data not shown). 7–10% of reads mapped to lncRNA, regardless of the number of cells used, and a consistent number of lncRNA transcripts were detected with inputs ranging from 5–1,000 cells.

Further analysis of the sequencing data indicated very high reproducibility across all inputs. The hierarchical clustering heat map in Figure 3B shows that most single cells tend to cluster together, yet display very high correlation with higher inputs. Indeed, the Pearson correlations between any given sample range from 0.85 to 0.99, regardless of input amount. The libraries generated from purified total RNA display extremely high correlations with libraries generated directly from various cell inputs, particularly those generated from 5–100 cells. The library yields from 500 and 1,000 cells were slightly lower than anticipated (data not shown) and, as such, the correlations to the libraries made from purified total RNA or 5–100 cells are not as high. This suggests some inefficiency in the reverse transcription step for the higher inputs, possibly due to contaminants associated with cells and culture media. The cells for this experiment were isolated by FACS, which is not ideal for inputs of 500–1,000 cells, considering the small volume of sorting solution. Independent experiments for libraries generated with manually counted and aliquoted cells led to higher reproducibility relative to purified total RNA (data not shown). Taken together, these data show that the SMART-Seq Stranded Kit exhibits consistent performance from 1–1,000 cells.

Sequencing alignment metrics for A375 total RNA and cells
InputTotal RNA1,000 cells500 cells100 cells10 cells5 cells1 cell
Number of reads (pairs) 6,000,000 6,000,000 6,000,000 6,000,000 6,000,000 6,000,000 5,873,974
Number of transcripts >1 FPKM 13,260 13,294 13,583 13,520 12,726 12,602 11,540
Number of transcripts >0.1 FPKM 21,334 21,113 21,365 21,145 20,550 18,888 15,815
Proportion of reads (%):
Exonic 34.7 36.4 39.2 42.7 36.7 36.2 37.3
Intronic 29.6 29.3 27.7 28.3 34.0 30.4 21.1
Intergenic 14.2 13.4 12.2 12.9 16.7 16.8 10.1
rRNA 7.0 11.4 11.5 6.3 3.6 4.9 7.1
Mitochondrial 4.1 3.5 3.7 4.9 3.8 4.4 4.6
Overall mapping (%) 89.6 93.9 94.3 95.1 94.9 92.7 80.2
Duplicate rate (%) 37.3 45.2 40.3 46.1 52.5 72.2 78.5
lncRNA mapping:
Number of mapped reads (%) 7.2 10.4 10.8 9.4 8.7 8.6 7.3
lncRNA transcripts detected 5,395 4,687 4,565 5,439 5,440 4,983 2,802

High reproducibility of libraries generated across input cell amounts

Figure 3: High reproducibility across cell input amounts. A375 cells isolated by FACS were used to generate RNA-seq libraries with the SMART-Seq Stranded Kit. Input varied from 1 cell to 1,000 cells, with two replicates per input of 5–1,000 cells and 12 replicates for the single cells. For comparison, two aliquots of 1,000 cells were used for total RNA purification and then used for library preparation. Panel A. Consistent sequencing metrics across 1–1,000 cells. Panel B. Hierarchical clustering heat map displaying Euclidean distance between all the samples shown in Panel A, and reporting Pearson correlations ranging from 0.85 to 0.99. Single cells are labelled Cell1–Cell12; replicates for other inputs are labelled a–b.

Similar sensitivity and reproducibility between the SMART-Seq v4 and SMART-Seq Stranded kits

The new SMART-Seq Stranded Kit was compared side by side with our industry-standard single-cell RNA-seq kit, the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (SSv4). Libraries were generated with both kits from K562 single cells isolated by FACS and then sequenced. The total number of transcripts identified by each kit (FPKM >1) was very similar, with 19,331 transcripts identified with the SSv4 kit and 19,106 transcripts with the SMART-Seq Stranded Kit (Figure 4A). Importantly, most transcripts were identified by both kits, with an impressive overlap of 84%. The number of transcripts identified in individual cells was also similar between the two kits, although these numbers were more consistent across cells processed with the SSv4 kit (Figure 4B). Reproducibility across all cells from each kit is similar, although slightly higher and more consistent for the SMART-Seq Stranded Kit, as demonstrated by the Pearson correlations in Figure 4C. The wider range observed for the SSv4 kit could be due to the higher number of cells analyzed. Overall, these data show that the SMART-Seq Stranded Kit can achieve comparable sensitivity and reproducibility to the SSv4 kit.

Similar sensitivity and reproducibility between SMART-Seq v4 and SMART-Seq Stranded kits

Figure 4. Comparison between SMART-Seq v4 and SMART-Seq Stranded kits. Single cells (K562) isolated by FACS were used to generate RNA-seq libraries with the SMART-Seq Stranded Kit (Stranded) and a SMART-Seq v4 Kit (SSv4; cDNA from this kit was further processed with a Nextera® XT DNA Library Preparation Kit). Panel A. The overlap in the total number of transcripts identified (FPKM >1) by each kit was analyzed and shown to be 83.8%. Panel B. The number of transcripts identified (FPKM >1) in individual cells was similar between the two kits, with a tighter range across cells processed with the SSv4 kit. Panel C. The reproducibility (Pearson correlation) of transcript expression levels across all cells from each kit was similar, although slightly higher and more consistent across cells processed with the Stranded kit.

Superior performance of the SMART-Seq Stranded Kit over other single-cell RNA-seq kits

The SMART-Seq Stranded Kit is designed to capture all RNAs through random priming, while our gold-standard SSv4 kit only captures the polyadenylated fraction through oligo(dT) priming. Among other commercially available kits for single-cell RNA-Seq (Table II), NuGEN’s Ovation SoLo RNA-Seq System is promoted for the capture of total RNA transcripts, but features over 30 different components and a strenuous 15-hour protocol (more than double that of the SMART-Seq Stranded Kit). In addition, the requirement for a custom read1 primer makes the sequencing logistics complicated. QIAGEN’s QIAseq FX Single Cell RNA Library Kit (QIAseq FX) is also promoted for the capture of total RNA transcripts (if using the optional combination of random and oligo(dT) priming), and features a short and simple workflow similar to that of the SMART-Seq Stranded Kit. However, libraries generated with the QIAseq FX kit do not retain strand-of-origin information, which is a major drawback for the study of lncRNA or more precise mapping in general.

Capabilities of commercially available single-cell RNA-seq kits
KitStrand-specificityGenerates sequencing-ready librariesCaptures polyA or total transcriptsTotal timeAccommodates degraded samplesPearson correlation at 10 pg, 1 ng
SMART-Seq Stranded Kit Yes Yes Both 7 hr Yes 0.90, 0.99
QIAseq FX Single Cell RNA Library Kit No Yes Both 5.5 hr No 0.57, NA
Ovation SoLo RNA-Seq System Yes Yes Both 15 hr Yes 0.8, 0.9*
SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing No No PolyA 4 hr + Nextera processing No 0.97, 0.99

*Data obtained from NuGEN’s website (unknown RNA origin).

Table II. Feature comparison of commercially available single-cell RNA-seq kits. All Pearson correlation data were generated by TBUSA using human brain total RNA, unless otherwise noted.

Even though the QIAseq FX kit does not retain strand-of-origin information, the vendor claims to generate libraries from single cells in a relatively short amount of time, so we compared performance for the SMART-Seq Stranded Kit and QIAseq FX kit in a side-by-side experiment. Libraries were generated using human brain total RNA and Jurkat cells. For total RNA samples, 50 pg was chosen in order to match the manufacturer’s lowest recommended input amount for the QIAseq FX kit. Jurkat cells were isolated by FACS and dispensed as 50 cells per tube. To minimize variability, the same batch of sorted cells were used for testing each kit. In all cases, the sequencing metrics were fairly consistent between technical replicates (Figure 5A). However, 40–47% of the reads generated from the QIAseq FX kit were essentially wasted rRNA reads, while the SMART-Seq Stranded Kit generated only 3–4% rRNA reads—one tenth that of the QIAseq FX kit. Overall mapping was 94–97% for the SMART-Seq Stranded Kit, while only 82–87% of the reads generated with the QIAseq FX kit could be mapped. This may be because the QIAseq FX kit workflow involves a ligation of all cDNA followed by multiple displacement amplification, which generates hybrid cDNA junctions that do not exist in nature and cannot be mapped properly. Nevertheless, the high number of uninformative reads can in theory be compensated by higher sequencing depth. This does not appear to be the case with the QIAseq FX kit, as even with 8M reads used for analyzing the libraries from Jurkat cells, the number of transcripts detected was considerably below the number of transcripts detected in the SMART-Seq Stranded Kit. The substantially higher sensitivity of the SMART-Seq Stranded Kit was observed regardless of the sequencing depth (Figure 5B).

Another remarkable difference between the two kits is the reproducibility between replicates. Using 50 pg of total RNA, the Pearson correlations between replicates prepared with the QIAseq FX kit was only 0.66 compared to 0.97 for the SMART-Seq Stranded Kit (Figure 5A). When using a true single-cell equivalent of 10 pg, the Pearson correlation was only 0.57 for the QIAseq FX kit (Table II and data not shown), while the SMART-Seq Stranded Kit shows a correlation of 0.92 (Table I). When testing higher inputs (50 Jurkat cells), both kits presented a high Pearson correlation of 0.99 between biological replicates, but the Spearman correlation was considerably lower for the QIAseq FX kit (Figure 5A). Since correlations are only calculated for transcripts identified in the two replicates, we asked how many transcripts this represented. The SMART-Seq Stranded Kit identified a total of 13,354 transcripts with FPKM >1, of which 80% were common to the two replicates (Figure 5C). The QIAseq FX kit identified almost 1,000 fewer transcripts, and only 66% of overlap between the two replicates. Taken together, these data show that the SMART-Seq Stranded Kit exhibits higher sensitivity and more consistent performance than the QIAseq FX kit.

Sequencing alignment metrics for SMART-Seq Stranded Kit compared to QIAseq FX kit
RNA sourceHuman brain total RNA - 50 pgJurkat cells - 50 cells
Protocol SMART-Seq Stranded QIAseq FX SMART-Seq Stranded QIAseq FX
Number of transcripts >1 FPKM 14,398 14,364 13,300 12,594 11,973 12,067 10,949 10,232
Number of transcripts >0.1 FPKM 21,314 21,346 20,610 19,744 19,053 19,242 16,198 15,373
Pearson/Spearman correlations 0.97/0.67 0.66/0.63 0.99/0.90 0.99/0.74
Proportion of reads (%)
Exonic 39.9 39.5 22.9 20.7 36.8 36.2 17.8 18.2
Intronic 35.8 35.4 9.8 10.5 45.3 45.0 8.4 8.2
Intergenic 8.8 8.7 4.5 7.1 9.9 10.6 9.8 10.1
rRNA 3.8 4.4 40.8 42.6 2.5 2.9 47.8 47.2
Mitochondrial 6.3 6.4 4.4 5.5 2.8 2.4 3.2 3.2
Overall mapping (%) 94.5 94.4 82.4 86.4 97.3 97.0 87.0 86.9

Superior performance of the SMART-Seq Stranded Kit compared to the QIAseq FX Single Cell RNA Library Kit

Figure 5. Comparison between the SMART-Seq Stranded Kit and the QIAseq FX Single Cell RNA Library Kit. Panel A. Human brain total RNA (50 pg) and cells isolated by FACS (Jurkat cell line, 50 cells) were used to generate RNA-seq libraries in duplicate with the SMART-Seq Stranded Kit (Stranded) and the QIAseq FX Single Cell RNA Library Kit (QIAseq FX). Following sequencing, human brain total RNA data were analyzed using 2.5M paired-end reads for the Stranded kit, and 5M paired-end reads for the QIAseq FX kit. All data generated from Jurkat cells were normalized to 8M paired-end reads. The Pearson and Spearman correlations were determined between the replicates shown. Panel B. A downsampling experiment with the data generated from Jurkat cells clearly shows that the higher sensitivity observed for the Stranded kit is maintained with lower sequencing depth. Panel C. Assessment of reproducibility between the two kits for the libraries generated from Jurkat cells. Using an expression level cutoff of FPKM >1, the total number of transcripts identified and the overlap between the replicates is much greater for the Stranded kit.

Conclusions  

The new SMART-Seq Stranded Kit generates sequencing-ready, stranded RNA-Seq libraries from 1–1,000 cells or 10 pg–10 ng of total RNA. It provides an excellent alternative to SMART-Seq v4 kits for researchers interested in acquiring single-cell, whole-transcriptome data with strand-of-origin information. It can also be a valuable tool for analyzing cell input samples with a partially degraded transcriptome due to the harsh conditions required for isolation of single cells (e.g., from tumor tissues). In addition, the SMART-Seq Stranded Kit is a better option than the Pico v2 kit for purified total RNA inputs below 500 pg.

Methods  

Cell sorting and library preparation

Sequencing libraries were generated using the SMART-Seq Stranded Kit (Cat. # 634442, 634443, 634444), the SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Cat. # 634411, 634412, 634413, 634414), or the QIAseq FX Single Cell RNA Library Kit (Qiagen, Cat. # 180733) as specified in the respective user manuals. For the comparison against the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing, the cDNA synthesis and amplification from the SMART-Seq v4 cDNA protocol was performed with the assistance of a SMARTer Apollo instrument, as described in the SMART-Seq v4 Reagent Kit for the SMARTer Apollo System user manual. The Apollo System was also used to prepare the Nextera libraries (with the Nextera XT DNA Library Preparation Kit; Illumina, Cat. # FC-131-1024) from the SMART-Seq v4 cDNA. PCR cycling parameters varied for the respective input types and amounts as specified in the user manuals. For the QIAseq FX kit, the options for "Amplification of Total RNA from Single Cells", involving the use of a mixture of Oligo dT Primer and Random Primer, were followed.

For preparation of libraries directly from cells, aliquots of 1–1,000 cells were obtained using FACS. Sorting was done using a BD FACSJazz Cell Sorter. Cells were labeled with an anti-CD81 (K562, Jurkat) or CD45 (A375) antibody and sorted in 7 µl of 1X PBS buffer (DPBS without calcium chloride and magnesium chloride; Sigma Aldrich, Cat. # D8537) in 8-tube PCR strips. Following sorting, cells were subjected to a quick spin and immediately flash frozen on dry ice, then stored at –80°C until use (up to three months after sorting). For the comparison against the SMART-Seq v4 Reagent Kit for the SMARTer Apollo System, additional 8-tube PCR strips were prepared containing 12 µl of FACS Dispensing Solution (prepared by mixing 0.95 µl of 10X lysis buffer, 0.05 µl of RNase Inhibitor, 1 µl of 3' SMART-Seq CDS Primer II A) and 10.5 µl of water. A single batch of cells was sorted either in PBS or FACS Dispensing Solution; this same batch of cells was used for testing both kits. For the comparison between the Stranded kit and QIAseq FX kit, cells from the Jurkat cell line were sorted in 7 µl of PBS as described above (50 cells per tube), and two aliquots from this batch were used for each kit.

For comparison to purified total RNA, aliquots of 1,000 A375 cells were used to extract RNA using NucleoSpin RNA XS (Cat. # 740902) in accordance with the manufacturer's instructions (including the optional on-column DNase step). Purified total RNA was eluted in a volume of 12 µl, from which 7 µl was used as input for library construction.

Sequencing and analysis

Libraries were sequenced on a NextSeq® 500 instrument using 2 x 75 bp paired-end reads. Reads from all libraries were trimmed to remove Illumina adapters and polyA sequences, and mapped to human rRNA and mitochondrial genomes using CLC Genomics Workbench. The remaining reads were subsequently mapped using CLC to the human genome with RefSeq annotation. All percentages shown, including the number of reads that map to introns, exons, or intergenic regions, are percentages of total reads in each library. The number of transcripts identified for each library was determined based on the number of transcripts with an FPKM ≥1 or 0.1, as specified. The number of reads mapping to the correct strand (as defined in the current genome annotation) was determined using Picard analysis. For analysis of lncRNA, reads were mapped against the "Long non-coding RNA transcript sequences" fasta file included in the GENCODE GRCh38-release 26 (containing 27,720 loci transcripts). The number of lncRNAs detected is based on a cutoff of 10 unique counts or more. Scatter plots in Figure 5 were generated using FPKM values from CLC mapping to the transcriptome. To highlight transcripts found in only one replicate (dropouts), 0.01 was added to each value prior to graphing (Figure 2B).

Related Products

Cat. # Product Size Price License Quantity Details
634442 SMART-Seq® Stranded Kit 12 Rxns $984.00

License Statement

ID Number  
325 Patent pending. For further information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The SMART-Seq Stranded Kit is used to generate strand-specific RNA-seq libraries for Illumina® sequencing from 1–1,000 sorted cells or 10 pg–10 ng of purified total RNA. This kit incorporates Takara Bio's SMART (Switching Mechanism at the 5' end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. In addition, contrary to the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing and SMART-Seq HT Kit, reverse transcription is initiated using random priming instead of oligo(dT) priming, thus capturing the full transcriptome instead of only the polyadenylated fraction. The SMART-Seq Stranded Kit was specifically designed to deliver highly sensitive and reproducible data from single cells while keeping the workflow short and user friendly. The kit does not require additional rRNA removal methods or kits and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA-typically present in high abundance following cDNA synthesis from total RNA inputs-makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like
634443 SMART-Seq® Stranded Kit 48 Rxns $3264.00

License Statement

ID Number  
325 Patent pending. For further information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The SMART-Seq Stranded Kit is used to generate strand-specific RNA-seq libraries for Illumina® sequencing from 1–1,000 sorted cells or 10 pg–10 ng of purified total RNA. This kit incorporates Takara Bio's SMART (Switching Mechanism at the 5' end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. In addition, contrary to the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing and SMART-Seq HT Kit, reverse transcription is initiated using random priming instead of oligo(dT) priming, thus capturing the full transcriptome instead of only the polyadenylated fraction. The SMART-Seq Stranded Kit was specifically designed to deliver highly sensitive and reproducible data from single cells while keeping the workflow short and user friendly. The kit does not require additional rRNA removal methods or kits and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA-typically present in high abundance following cDNA synthesis from total RNA inputs-makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like
634444 SMART-Seq® Stranded Kit 96 Rxns $4320.00

License Statement

ID Number  
325 Patent pending. For further information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The SMART-Seq Stranded Kit is used to generate strand-specific RNA-seq libraries for Illumina® sequencing from 1–1,000 sorted cells or 10 pg–10 ng of purified total RNA. This kit incorporates Takara Bio's SMART (Switching Mechanism at the 5' end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. In addition, contrary to the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing and SMART-Seq HT Kit, reverse transcription is initiated using random priming instead of oligo(dT) priming, thus capturing the full transcriptome instead of only the polyadenylated fraction. The SMART-Seq Stranded Kit was specifically designed to deliver highly sensitive and reproducible data from single cells while keeping the workflow short and user friendly. The kit does not require additional rRNA removal methods or kits and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA-typically present in high abundance following cDNA synthesis from total RNA inputs-makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2018 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. (TBUSA, formerly known as Clontech Laboratories, Inc.) provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
  • Corporate development
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2019 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • SMARTer Apollo system
  • SMARTer ICELL8 systems
  • Next-generation sequencing
  • Single-cell RNA- and DNA-seq
  • RNA-seq
  • DNA-seq
  • Immune profiling
  • Real-time PCR
  • Real-time PCR kits
  • RNA extraction and analysis for real-time qPCR
  • Reverse transcription prior to qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • Lyophilized master mixes
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Legacy cloning products
  • Nucleic acid extraction
  • Cell biology assays
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Signal transduction
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • Tet-inducible expression systems
  • Transfection reagents
  • Protein research
  • Purification products
  • Mass spectrometry reagents
  • Two-hybrid and one-hybrid systems
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • CRISPR-Cas9 promotion
  • RT-qPCR bundle promotion
  • Lenti-X special offers
Create a web account with us

Log in to enjoy additional benefits

Why sign up for an account?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site
•  Accessing restricted content

Create an account to get started

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • SMARTer Apollo library prep system introduction
  • SMARTer ICELL8 introduction
  • Next-generation sequencing
  • Selection guide
  • Product line overview
  • Technical notes
  • FAQs and tips
  • Webinars
  • Posters
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Overview
  • Technical notes
  • FAQs
  • Stem cell research
  • Application protocols
  • Technical notes
  • Webinars
  • Videos
  • Citations
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • RNA purification
  • Hard-to-lyse samples
  • cDNA synthesis
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Cloning
  • In-Fusion Cloning tools
  • In-Fusion Cloning guide
  • In‑Fusion Cloning FAQs
  • In‑Fusion Cloning tips
  • Choosing a seamless cloning method
  • Seamless cloning primer design
  • Cell biology assays
  • Gene function
  • Gene editing
  • Viral transduction
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Protein research
  • Capturem rapid purification technology
  • His-tag purification
  • Antibody purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Antibodies and ELISA
Capturem Trypsin for a rapid, efficient mass spectometry workflow at room temperature.

Speed up your mass spec workflow

Capturem Trypsin provides rapid, efficient, and complete digestion of protein samples, allowing an uninterrupted mass spectometry workflow at room temperature for downstream protein analysis. This product utilizes our novel Capturem technology in a spin column format with membrane-immobilized trypsin. Capturem Trypsin Columns may be used to completely digest protein samples in less than a minute with digestion efficiencies (protein coverage) comparable to or better than those obtained using in-solution trypsin digestion.

Capturem trypsin technology

  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Trademarks
  • License statements
  • Vector information
  • Vector document overview
  • Vector document finder
  • Website FAQs
  • Feedback
  • Business development
  • OEM, custom, and supply-chain solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Instrument & reagent services
  • Instrument services
  • Cell and gene therapy manufacturing services
  • Stem cell services
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

Learn more

  • Announcements
  • Events
  • Calendar
  • Conferences
  • Careers
  • Quality statement
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • BioView blog
  • Need help?

Mapping the brain, one cell type at a time

Learn about pioneering efforts to map the mammalian brain using single-cell transcriptomics.

Watch video

  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • Feedback
  • About
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. (TBUSA, formerly known as Clontech Laboratories, Inc.) provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • SMARTer Apollo system
  • SMARTer ICELL8 systems
  • Next-generation sequencing
  • Single-cell RNA- and DNA-seq
  • RNA-seq
  • DNA-seq
  • Immune profiling
  • Epigenetics and small RNA sequencing
  • Sequencing accessories
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • Tet-inducible expression systems
  • ProteoTuner protein control systems
  • iDimerize inducible protein interaction systems
  • Transfection reagents
  • Mammalian expression plasmids
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Accessories
  • Protein research
  • Purification products
  • Expression vectors & systems
  • Antibodies and immunoprecipitation
  • Mass spectrometry reagents
  • Protein sequencing
  • Glycobiology
  • Two-hybrid and one-hybrid systems
  • SDS-PAGE & western blotting
  • Accessory enzymes
  • PCR
  • Standard PCR
  • High-yield PCR
  • High-fidelity PCR
  • Fast PCR
  • Long-range PCR
  • GC rich PCR
  • Direct PCR
  • Lyophilized master mixes
  • Commercial-use products
  • Molecular diagnostic products
  • GMP-grade products
  • Application-specific PCR
  • Other PCR-related products
  • PCR thermal cyclers
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Mutagenesis kits
  • Ligation enzymes
  • Restriction enzymes
  • Modifying enzymes
  • Legacy cloning products
  • X-Gal and IPTG
  • Linkers, primers, and cloning vectors
  • Agarose gel electrophoresis
  • Nucleic acid extraction
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • RNA cleanup kits
  • Viral DNA and RNA purification kits
  • Accessories and components
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Secondary antibodies
  • Antibody and ELISA accessories
  • Fluorescent protein antibodies
  • Cell biology assays
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Cell biology reagents
  • RNA interference
  • Cell-culture accessories
  • Signal transduction
  • Real-time PCR
  • Real-time PCR kits
  • RNA extraction and analysis for real-time qPCR
  • Reverse transcription prior to qPCR
  • Real-time PCR primer sets
  • References and standards for qPCR
  • Application-specific qPCR
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • cDNA synthesis accessories
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • SMARTer Apollo library prep system introduction
  • SMARTer ICELL8 introduction
  • Next-generation sequencing
  • Selection guide
  • Product line overview
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Webinars
  • Citations
  • Posters
  • Gene function
  • Gene editing
  • Viral transduction
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Stem cell research
  • Application protocols
  • Technical notes
  • Posters
  • Webinars
  • Videos
  • FAQs
  • Citations
  • Selection guides
  • Overview
  • Protein research
  • Capturem rapid purification technology
  • His-tag purification
  • Antibody purification
  • Phosphoprotein and glycoprotein purification
  • Other tag purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Expression systems
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Go green with lyophilized enzymes
  • LA PCR technology
  • Cloning
  • In-Fusion Cloning tools
  • In-Fusion Cloning guide
  • In‑Fusion Cloning FAQs
  • In‑Fusion Cloning tips
  • Choosing a seamless cloning method
  • Seamless cloning primer design
  • In-Fusion Cloning applications collection
  • Efficient cloning for sgRNA/Cas9 plasmids
  • In-Fusion Cloning tech notes
  • In-Fusion Cloning webinars
  • In-Fusion Cloning citations
  • EcoDry reagents and sustainability
  • Mutagenesis with In-Fusion Cloning
  • Efficient multiple-fragment cloning
  • Sign up to stay updated
  • Traditional molecular cloning
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • RNA purification
  • Parallel DNA, RNA & protein
  • Hard-to-lyse samples
  • Antibodies and ELISA
  • Leucine rich repeat-containing protein (LRG)
  • Oncogene research focus
  • mTOR in aging and cancer
  • Osteocalcin focus
  • Cell biology assays
  • Cell viability kits
  • Improved exosome isolation
  • Mir-X microRNA quantification
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Overview
  • Technical notes
  • FAQs
  • cDNA synthesis
  • Premium total and poly A+ RNA
  • SMARTer RACE 5'/3' Kit—advances in SMARTer PCR cDNA synthesis
  • Cloning antibody variable regions
  • Services & Support
  • Technical support
  • Shipping & delivery
  • Customer service
  • Sales
  • Website FAQs
  • Vector information
  • Instrument & reagent services
  • Corporate development
  • Takara Bio affiliates & distributors
  • License statements
  • Trademarks
  • Vector information
  • Vector document overview
  • Vector document finder
  • Instrument & reagent services
  • Instrument services
  • Cell and gene therapy manufacturing services
  • Stem cell services
  • Corporate development
  • OEM, custom, and supply-chain solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Areas of interest
  • Cancer research
  • Immunotherapy research
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • About
  • Manufacturing DSS Takara Bio India
  • Careers
  • Quality and compliance
  • Need help?
  • Our brands
  • Our history
  • Announcements
  • Our partners
  • BioView blog
  • That's Good Science!
  • Special offers
  • New products
  • Events
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • Special offers
  • CRISPR-Cas9 promotion
  • RT-qPCR bundle promotion
  • Lenti-X special offers
  • End of the Year Promo (DKK)
  • End of the Year Promo (EU)
  • End of the Year Promo (SEK)
  • End of the Year Promo (CHF)
  • End of the Year Promo (GB)
  • Events
  • Calendar
  • Conferences
  • Products
  • Learning centers
  • Services & Support
  • About
  • Areas of interest