We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer

Contact us

Home › Applications › Pathogen detection › Identification and characterization

Pathogen detection

  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
Need help?
Contact Sales

Contact us

Combining the capabilities of PCR and NGS to identify and characterize pathogens

Outbreak control and disease prevention efforts rely on swift identification and characterization of novel and existing pathogens, which are then used to develop new and better detection methods. Fast results are crucial for developing effective tools and deploying those tools to limit the spread of an infectious disease. In addition to requiring rapid results, researchers working with challenging sample types (e.g., clinical research and environmental samples that often contain very low copy numbers) need highly sensitive and accurate tools to detect and sequence their target pathogen.

Real-time quantitative PCR (RT-qPCR)- and PCR-based methods are widely used together with next-generation sequencing (NGS) analysis to identify and characterize viral and bacterial pathogens due to their efficiency, sensitivity, and accuracy. RT-qPCR has been used in assays that detect and confirm specific viral sequences obtained using NGS technology. Multiplex PCR has also been used to detect pathogenic bacteria in combination with NGS analysis. These technologies have played key roles in studies involving a variety of viral, bacterial, and mammalian pathogens. Examples include the initial identification and sequencing of the SARS-CoV-2 virus, the identification of Leptospira in a variety of environmental samples in order to understand its mode of transmission, and the identification of mutations in the Epstein-Barr virus (EBV) genome that may cause chronic active EBV (CAEBV) and lymphoma.


Identifying and classifying SARS-CoV-2

The novel coronavirus, SARS-CoV-2 was first identified and classified using a combination of RNA-seq, one-step RT-qPCR, and Rapid Amplification of cDNA Ends (RACE). The authors (Zhu et al. 2020) of the first publication that identified this new RNA virus developed an RT-qPCR screening test that used Takara Bio's One Step PrimeScript RT-PCR Kit (Perfect Real Time) to detect specific viral sequences that were obtained by using RNA-seq to analyze the virus. The authors performed a full-length phylogenetic analysis, which showed that SARS-CoV-2 was similar to some betacoronaviruses detected in bats, but distinct from SARS-CoV and MERS-CoV, two previously identified coronaviruses that can cause severe respiratory illness in humans. 

SARS-CoV-2

Another research study (Wu et al. 2020) also used RNA-seq to determine the viral genome sequence of SARS-CoV-2, which they confirmed using RT-qPCR. Next-generation meta-transcriptomic sequencing analysis enabled the researchers to obtain a complete viral genome sequence. Subsequent phylogenetic analysis performed by this group also indicated that the virus is most closely related to a group of SARS-like coronaviruses that had previously been found in bats in China. These analyses were made possible in part by kits and reagents produced by Takara Bio: an RNA library was constructed using our pico-input strand-specific total RNA-seq technology, the viral genome sequence was determined and confirmed by performing RT-qPCR with the One Step PrimeScript RT-PCR Kit (Perfect Real Time), and the SMARTer RACE 5′/3′ Kit was used to study the genome termini.

NGS- and PCR-based methods were utilized in another publication (Zhou et al. 2020) to perform a metagenomic analysis that identified the virus as 96% identical to a bat coronavirus at the whole-genome level. This group also used the SMARTer RACE 5'/3' Kit to determine the 5' ends of the genomes. The pairwise protein sequence analysis of seven conserved nonstructural proteins showed that this virus belongs to the species of SARSr-CoV. They also confirmed that SARS-CoV-2 uses the same cell entry receptor, ACE2, as SARS-CoV, which has proven to be of vital importance in the quest to develop treatments and vaccines to combat the COVID-19 pandemic.


Investigating transmission of leptospirosis in the environment

Leptospirosis is a disease caused by the Leptospira bacteria that infects humans through exposure to the urine of animals carrying these bacteria or contaminated environmental samples. A research group in Okinawa, Japan (Sato et al. 2019) sought to develop new tools to systematically detect Leptospira in order to prevent human infection. They studied the bacterial ecosystem that allows the development of Leptospira during biofilm formation and investigated which animals are potential reservoirs for transmitting this pathogen to humans by analyzing a variety of environmental samples using multiplex PCR and NGS.

The researchers screened environmental water samples from a known endemic region in Japan for rRNA targets specific to Leptospira and animals living nearby. They performed multiplex PCR analysis with Takara Ex Taq HS DNA polymerase to detect bacteria using 16S rRNA targets, which they analyzed by NGS. A similar procedure was carried out using PrimeSTAR HS DNA Polymerase to detect 12S rRNA from vertebrates in the same environmental samples, in order to understand which species are more likely to harbor Leptospira. The presence of certain animals seemed to correlate with high levels of Leptospira, showing a potential link between pathogen and carrier. They were able to draw a correlation between strains of bacteria that propagate pathogenic Leptospira and the animals that are the primary reservoirs of these bacteria. This study demonstrated the robustness of Takara Ex Taq HS and PrimeSTAR HS DNA polymerases to detect bacteria in environmental water samples, which are difficult to work with due to the presence of PCR-inhibitory contaminants. The multiplex PCR method used in the study was a powerful tool that helped determine how Leptospira outbreaks could occur, revealing the interactions between the pathogen, its hosts/carriers, and the environment.


Locating EBV genomic deletions linked to CAEBV-associated lymphomas

Epstein-Barr virus (EBV) is estimated to infect >95% of the population worldwide through the spread of saliva. In most instances, EBV infection will not display any symptoms, or it will lead to infectious mononucleosis before going permanently dormant. However, in some rare cases, the virus remains active, causing CAEBV (chronic active EBV). EBV is an oncogenic herpesvirus that preferentially infects B cells, and less frequently, T and NK cells, causing Hodgkin's lymphoma, Burkitt's lymphoma, epithelial carcinomas, and other malignancies when infecting patients chronically.

Epstein-Barr virus

Researchers from several Japanese universities carried out a collaborative investigation of the origins of CAEBV and the genomic mutations that lead to the development of tumors and lymphomas (Okuno et al. 2019). They performed long-range PCR with high-fidelity PrimeSTAR GXL polymerase in combination with Sanger and deep sequencing to probe for intragenic deletions in EBV genomes from patients with different CAEBV-associated lymphomas. The researchers identified deletions in microRNA clusters and viral particle production genes which could be linked to the malignancies, but no EBV genomic deletions were found in patients exhibiting infectious mononucleosis. PrimeSTAR GXL polymerase played a vital role in helping to verify the intragenic deletions observed with NGS in this study because it is optimized to perform well with long amplicons and challenging (GC-rich or AT-rich) templates. PCR analysis using a robust, reliable polymerase such as PrimeSTAR GXL is critical for confirming pathogenic mutations, insertions, and deletions observed with NGS.


References

  • Okuno, Y. et al. Defective Epstein-Barr virus in chronic active infection and haematological malignancy.  Microbiol. 4, 404–413 (2019). Available at: https://www.nature.com/articles/s41564-018-0334-0
  • Sato, Y. et al. Environmental DNA metabarcoding to detect pathogenic Leptospira and associated organisms in leptospirosis-endemic areas of Japan.  Rep. 9, 1–11 (2019). Available at: https://www.nature.com/articles/s41598-019-42978-1
  • Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). Available at: https://www.nature.com/articles/s41586-020-2008-3
  • Zhou, P. et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv01.22.914952 (2020). Available at: https://www.biorxiv.org/content/10.1101/2020.01.22.914952v2
  • Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. NEJMoa2001017 (2020). doi: https://www.nejm.org/doi/full/10.1056/NEJMoa2001017
    • Zhu et al. supplementary appendix: RT-qPCR protocol and primers used 

Featured products

Cat. # Product Size Price License Quantity Details
RR600A One Step PrimeScript™ III RT-PCR Kit 200 Rxns USD $423.00

One Step PrimeScript III RT-qPCR Mix is a dedicated reagent for one-step real-time, probe-based RT-qPCR (using the 5’ nuclease method). This 2X premix does not freeze at its storage temperature of –20℃, so a reaction can be started simply by adding the template sample, primer, and a probe for detecting the desired target. The quick and simple protocol allows the reverse transcription and qPCR reactions to be performed in the same tube. The reverse transcription reaction uses the novel PrimeScript III RTase, which displays increased heat tolerance (up to 55℃) while maintaining the specificity and extensibility of PrimeScript RTase. This allows cDNA synthesis from RNA with a more complex secondary structure. After cDNA synthesis, TaKaRa Taq HS performs highly specific and efficient PCR amplification, while the fluorescence emitted by the probe is detected in real-time. One Step PrimeScript III RT-qPCR Mix is also highly resistant to a wide variety of inhibitory substances in blood and soil, allowing stable one-step real-time RT-qPCR to be performed on a wide range of samples. This product can be used for various applications such as gene expression, RNA virus detection, etc.

Cat. # RR600A contains sufficient reagent for performing 200 reactions in a volume of 25 µl per reaction.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

RR600A: One Step PrimeScript III RT-PCR Kit

RR600A: One Step PrimeScript III RT-PCR Kit
634485 SMARTer® Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian 24 Rxns USD $2685.00

License Statement

ID Number  
425 LIMITED USE LABEL LICENSE: RESEARCH USE ONLY Notice to Purchaser: This product is the subject to a license granted to Takara Bio USA, Inc. and its Affiliates from Caribou Biosciences, Inc., and this product is transferred to the end-user purchaser (“Purchaser”) subject to a “Limited Use Label License” conveying to the Purchaser a limited, nontransferable right to use the product, solely as provided to Purchaser, together with (i) progeny or derivatives of the product generated by the Purchaser (including but not limited to cells), and (ii) biological material extracted or derived from the product or its corresponding progeny or derivatives (including but not limited to cells) (collectively, the product, and (i) and (ii) are referred to as “Material”) only to perform internal research for the sole benefit of the Purchaser. The Purchaser cannot sell or otherwise transfer Material to a third party or otherwise use the Material for any Excluded Use. “Excluded Use” means any and all: (a) commercial activity including, but not limited to, any use in manufacturing (including but not limited to cell line development for purposes of bioproduction), product testing, or quality control; (b) preclinical or clinical testing or other activity directed toward the submission of data to the U.S. Food and Drug Administration, or any other regulatory agency in any country or jurisdiction where the active agent in such studies comprises the Material; (c) use to provide a service, information, or data to a third party with the sole exception of using the Material to conduct in vitro sample preparation, i.e., selectively depleting target cDNAs from a sample either by cleaving or selectively separating such target cDNAs from the sample through the use of the Materials; (d) use for human or animal therapeutic, diagnostic, or prophylactic purposes or as a product for therapeutics, diagnostics, or prophylaxis; (e) activity in an agricultural field trial or any activity directed toward the submission of data to the U.S. Department of Agriculture or any other agriculture regulatory agency; (f) high throughput screening drug discovery purposes (i.e., the screening of more than 10,000 experiments per day) as well as scale-up production activities for commercialization; (g) modification of human germline, including editing of human embryo genomes (with the sole exception of editing human embryonic stem (ES) cell lines for research purposes) or reproductive cells; (h) self-editing; and/or (i) stimulation of biased inheritance of a particular gene or trait or set of genes or traits (“gene drive”). It is the Purchaser’s responsibility to use the Material in accordance with all applicable laws and regulations. For information on obtaining additional rights, including commercial rights, please contact licensing@cariboubio.com or Caribou Biosciences, Inc., 2929 7th Street, Suite 105, Berkeley, CA 94710 USA, Attn: Licensing
392 This Product is protected by one or more patents from the family consisting of:US10941397, People's Republic of China Patent: ZL201480057094.4, US10781443, US10954510, DE602014069266.4, EP3058104, FR3058104, UK3058104, JP6602294, SE3058104, CA2923812, and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family. Information on relevant patents and licenses for this product may be found at: https://www.takarabio.com/patents. 
395
This Product is protected by one or more patents from the family consisting of: US10150985, CA2939621, People's Republic of China Patent: ZL201480077658.0, US10988796, DE602014058059.9, EP3105325, FR3105325, UK3105325, JP6416939 and any corresponding patents, divisionals, continuations, patent applications and foreign filings sharing common priority with the same family.  Additional information may be found at https://www.takarabio.com/patents. 
450 This Product is sold under license from JumpCode Genomics, Inc., and is covered by one or more of the following US patents and foreign counterparts as well as pending US and foreign patent applications: 10,604,802; 11,708,606; 11,761,039; PCT/US2015/014242; CA2938669; EP 20192599.7; HK402021031164.3.
455 This product is sold under license from Becton Dickinson and Co., and may be the subject of U.S. Patent Nos.: 8,835,358; 9,290,809; 9,315,857; 9,708,659; 9,845,502; 10,047,394; 10,059,991; 10,202,646; 10,392,661; 10,619,203; 11,970,737; 12,060,607; and its foreign counterparts.

The SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian is used to generate strand-specific RNA-seq libraries for Illumina sequencing from 250 pg–10 ng inputs of purified total RNA or from 10–1,000 intact cells. This kit incorporates Takara Bio’s proprietary SMART (Switching Mechanism at the 5’ end of RNA Template) technology and includes refinements to the SMARTer method for stranded RNA-seq that simplify the library preparation workflow and improve sequencing performance. This method was developed to work with either high- or low-quality total RNA, does not require additional rRNA removal methods or kits, and produces sequencing libraries that retain strand-of-origin information. The integrated removal of cDNAs derived from rRNA—typically present in high abundance following cDNA synthesis from total RNA inputs—makes the workflow extremely sensitive, yielding data that is highly reproducible with low mapping to rRNA. The new library design featured in this updated kit adds an 8 nucleotide (nt) unique molecular identifier (UMI) through the reverse-transcription step to mitigate potential PCR bias as well as to provide customers with additional information for transcript quantification, specifically for true variants and rare mutations. This kit includes the SMARTer RNA Unique Dual Index Kit - 24U (Takara Bio, Cat. No. 634451). SMARTer RNA Unique Dual Index Kit – 96U Set A and B (Cat. #s 634452, and 634457) are available for purchase. Together they offer up to 192 unique dual indexes for multiplexing.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

634485: SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian

634485: SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian
634858 SMARTer® RACE 5’/3’ Kit 10 Rxns USD $875.00

The SMARTer RACE 5'/3' Kit allows the synthesis of first-strand cDNA from poly A+ or total RNA via SMART (Switching Mechanism At 5' End of RNA Template) technology, and facilitates the performance of 5'- and 3'-RACE (Rapid Amplification of cDNA Ends) PCR with the kit's Universal Primer Mix. Our carefully designed, specially-modified SMARTer Oligo preferentially captures the 5' ends of the cDNA during cDNA synthesis. Using this SMARTer Oligo, our procedure enriches cDNA pools for 5' sequences, thus increasing the likelihood you will amplify the entire sequence of your gene.

RACE PCR products are amplified with the provided SeqAmp DNA Polymerase, and cloned into the linearized pRACE vector with In-Fusion HD Cloning. The SMARTer RACE 5'/3' Kit has been improved to accommodate larger RNA input volumes and perform better on challenging targets than the original SMARTer RACE cDNA Amplification Kit. The In-Fusion HD Cloning Kit, NucleoSpin Gel and PCR Clean-Up Kit, and Stellar Competent Cells are included for your convenience in cloning RACE products. Gene-specific RACE primers are supplied by the user.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

634858: SMARTer RACE 5'/3' Kit

634858: SMARTer RACE 5'/3' Kit

Back

Overview of the SMARTer RACE 5'/3' Kit workflow

Overview of the SMARTer RACE 5'/3' Kit workflow
Overview of the SMARTer RACE 5'/3' Kit workflow. Each kit is a complete system, containing the reagents required to recover cloned RACE fragments on the second day.

Back

Comparing products from the new and old SMARTer RACE kits

Comparing products from the new and old SMARTer RACE kits
Comparing products from the new and old SMARTer RACE kits. Primers were designed using the recommendations in each kit's manual. The samples on this gel image represent a wide range of expression values, and each one has a combined exon length of >10 kb. The new kit is much more successful in amplifying strong, single bands across the sample set.
RR006A TaKaRa Ex Taq® DNA Polymerase Hot-Start Version 250 Units USD $285.00

A hot-start version of Takara Ex Taq DNA polymerase, which combines the proven performance of Takara Taq polymerase with the proofreading activity of an efficient 3'-to-5' exonuclease, for high-sensitivity, high-efficiency PCR. Ex Taq is optimized for amplicons up to 20 kb from genomic DNA, and up to 30 kb from lambda DNA. Separate tubes of Mg2+ plus buffer and dNTP mix are supplied with the hot-start polymerase.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

The amplification efficiencies of Takara Ex Taq HS DNA Polymerase and a high-grade hot start PCR enzyme from Company A were compared

The amplification efficiencies of Takara Ex Taq HS DNA Polymerase and a high-grade hot start PCR enzyme from Company A were compared

The amplification efficiencies of Takara Ex Taq HS DNA Polymerase and a high-grade hot start PCR enzyme from Company A were compared. A 7.5 kb target was amplified from increasing amounts of human genomic DNA template. Excellent sensitivity and yields were obtained with Takara Ex Taq HS enzyme. Lane M: Lambda-Hind III digest, Lane 1: 100 pg, Lane 2: 300 pg, Lane 3: 1 ng, Lane 4: 3 ng, Lane 5: 10 ng, Lane 6: 30 ng, Lane 7: 100 ng.

Back

RR006A: TaKaRa Ex Taq DNA Polymerase Hot-Start Version

RR006A: TaKaRa Ex Taq DNA Polymerase Hot-Start Version
R010A PrimeSTAR® HS DNA Polymerase 250 Units USD $258.00

License Statement

ID Number  
M54 This product is covered by the claims of U.S. Patent Nos. 7,704,713 and its foreign counterparts. 

A high-fidelity hot-start (HS) PCR DNA polymerase with superior proofreading ability due to robust 3' to 5' exonuclease activity. PrimeSTAR HS DNA polymerase can efficiently amplify up to 8.5 kb for human genomic DNA targets or up to 22 kb for lambda DNA.  Separate tubes of optimzed buffer (Mg2+ plus) and dNTP mix are supplied with the enzyme.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data Resources

Back

PrimeSTAR High Amplification Efficiency

 PrimeSTAR High Amplification Efficiency
PrimeSTAR High Amplification Efficiency. Amplification efficiency was compared using high fidelity enzymes from Company A and Company B. (Target: Human DCLRE1A gene [2kb]) Reaction mixtures were prepared and PCR cycling conditions were performed according to each company's protocol (50 µL PCR reaction). These results demonstrate that PrimeSTAR provides excellent amplification efficiency with higher specificity than other suppliers' high fidelity enzymes. In addition, the detection sensitivity was higher by one order of magnitude.

Back

Sequence analysis of amplified DNA fragments

Sequence analysis of amplified DNA fragments
Sequence analysis of amplified DNA fragments. Sequence analysis is the most accurate method to investigate mutation frequency. This analysis revealed that PrimeSTAR HS has higher fidelity than an alternative high fidelity enzyme from Company A, with only 12 mismatched bases per 249,941 total bases, and 10X higher fidelity than Taq DNA polymerase. These results demonstrate PrimeSTAR HS DNA Polymerase's suitability for PCR amplifications that require extreme accuracy.

Back

R010A: PrimeSTAR HS DNA Polymerase

R010A: PrimeSTAR HS DNA Polymerase
R050A PrimeSTAR® GXL DNA Polymerase 250 Units USD $283.00

A hot-start, high-fidelity PCR enzyme, PrimeSTAR GXL DNA Polymerase excels in reactions with GC-rich templates, excess template, and long amplicons up to 30 kb (GXL). The polymerase is supplied with separate tubes of optimized buffer (Mg2+ plus), and dNTPs.

Also available as a premix.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data Resources

Back

Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases

Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases
Examples of product yield on GC-rich templates: comparison of PrimeSTAR GXL DNA Polymerase with four other commercially available high-fidelity DNA polymerases. Company T’s enzyme includes buffers optimized for GC-rich templates.

Back

PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA)

PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA)
PrimeSTAR GXL DNA Polymerase amplifies products up to 30 kb (human genomic DNA template), 40 kb (lambda DNA), or 13.5 kb (human cDNA).

Back

PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases

PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases
PrimeSTAR GXL DNA Polymerase shows efficient amplification in reaction mixes with a wide range of template quantity, including high levels of template that inhibit the activity of other commercially available high fidelity DNA polymerases.

Back

R050A: PrimeSTAR GXL DNA Polymerase

R050A: PrimeSTAR GXL DNA Polymerase

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us