We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Technotes
  • Enabling long-read RNA sequencing from low-input samples
  • Singular for low input total RNA seq
  • All-in-one cDNA synthesis and library prep from single cells
  • Automation-friendly, all-in-one cDNA synthesis and library prep
  • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
  • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
  • Full-length mRNA-seq for target capture
  • Stranded libraries from single cells
  • Stranded libraries from picogram-input total RNA (v3)
  • Stranded libraries from 100 pg-100 ng total RNA
  • Stranded libraries from 100 ng - 1 ug total RNA
  • Stranded libraries from FFPE inputs (v2)
  • Nonstranded libraries from FFPE inputs
  • Singular and Takara Bio library prep
  • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
Visit the product page
Home › Learning centers › Next-generation sequencing › RNA-seq › Technotes › 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)

RNA-seq

  • Automated library prep
  • Technologies and applications
    • SMART technology
    • Single-cell mRNA-seq
    • Total RNA-seq
    • SMART-Seq PLUS solutions
  • Technotes
    • Enabling long-read RNA sequencing from low-input samples
    • Singular for low input total RNA seq
    • All-in-one cDNA synthesis and library prep from single cells
    • Automation-friendly, all-in-one cDNA synthesis and library prep
    • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
    • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
    • Full-length mRNA-seq for target capture
    • Stranded libraries from single cells
    • Stranded libraries from picogram-input total RNA (v3)
    • Stranded libraries from 100 pg-100 ng total RNA
    • Stranded libraries from 100 ng - 1 ug total RNA
    • Stranded libraries from FFPE inputs (v2)
    • Nonstranded libraries from FFPE inputs
    • Singular and Takara Bio library prep
    • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
  • Webinars
    • Pushing the limits of sensitivity for single-cell applications
    • Capturing biological complexity by high-resolution single-cell genomics
    • Taking single-cell RNA-seq by STORM
    • STORM-seq Q&A
    • Neural multiomics Q&A
    • Liver metabolic function, dissecting one cell at a time
    • Pushing the limits Q&A
    • Total RNA sequencing of liquid biopsies
    • Liver metabolic function Q&A
    • Automating full-length single-cell RNA-seq libraries
    • Single-cell whole transcriptome analysis
    • Sensitivity and scale for neuron multiomics
  • RNA-seq tips
  • RNA-seq FAQs
New products
Need help?
Contact Sales
Visit the product page
Tech Note

Differential expression from single cells using the SMART-Seq v4 3' DE Kit

  • Overview of the SMART-Seq v4 end-capture method for generating sequencing libraries:
    SMART-based protocol and cell-barcoding enable up to 1,152 separate cell reads per sequencing lane.
  • Highly sensitive end-capture method:
    Twelve single K562 cells were processed, pooled, and sequenced in one pooled sample; we detected a large number of genes per cell with high correlations between cells.
  • Reads map to the 3' ends of transcripts:
    The end-capture protocol leads to a majority of reads mapping to the last 30% of transcript.

Differential expression (DE) analysis utilized for single-cell comparisons has become one of the key methods for studying transcriptome variability—especially when homogeneous cell populations are elusive, such as in cancer research, developmental biology, neurobiology, and immunology (Heaton et al. 2014; Henley et al. 2013; Saliba et al. 2014). SMART (Switching Mechanism at the 5' end of the RNA Template) technology has emerged as the most sensitive solution for processing the small amounts of mRNA present in single cells. Here we discuss the use of the SMART-Seq v4 3' DE Kit to enable differential expression (DE) analysis in a more efficient and cost-effective manner. SMART-Seq v4 kits incorporate LNA technology in order to produce high-quality, reproducible sequencing data with superior identification of genes, including those with low expression. By combining these features with cellular indexes, pooling, and 3' end-capture sequencing, we can obtain high-quality gene expression data without having to sequence the entire transcriptome.

Introduction Results Conclusion Methods References

Introduction  

Differential expression (DE) analysis focuses on comparing the relative expression levels of different transcripts in the cell and is one of the primary analysis tools used to explore transcriptome variability. End-capture methods are appealing for DE analysis as they can decrease the number of reads necessary to determine differential expression between cells. By focusing the sequencing data on a portion of each transcript (in this case, the 3' end of each transcript), we can reduce the number of reads and hence the overall cost required to identify expressed genes. Additionally, samples can be pooled prior to sequencing, decreasing the work and resources required and increasing the multiplexing capabilities of each sequencing lane.

In this tech note, we demonstrate the use of SMART-Seq v4 chemistry combined with an end-capture method for low-input amounts down to the single-cell level. As we have previously reported, SMART-Seq v4 technology produces high-quality cDNA libraries from individual cells that closely represent the original in vivo mRNAs. It is extremely sensitive, works with transcripts of different lengths, and has excellent gene body coverage across a wide range of GC content (see References for details). In order to reduce labor and cost, we have adapted this robust technology for 3' end capture, and here we present this approach and validate it by sequencing single K562 cells.

This approach allows each pool of cDNA from 12 single-cell reactions to be tagged by one of the 96 Illumina HT barcode combinations, enabling up to 1,152 separate cell reads per run. Researchers using this kit can confidently determine differentially expressed transcripts while decreasing the cost and time required for discovery. This method utilizes a modified oligo(dT) primer including an in-line index which serves as a cell barcode and a portion of the Illumina read primer 2 sequence in order to accommodate a pooled library generation protocol (Figure 1). The in-line index is placed between the transcript and the Illumina read primer 2 (RP2), and enables pooled cell samples to be demultiplexed after sequencing.

Overview of the end-capture method for generating libraries for sequencing

Figure 1. Overview of the end-capture method for analyzing differential expression. cDNA (black lines) is synthesized with a blocked (black star) and modified oligo(dT) primer that adds sequences for subsequent amplification and analysis—a cell barcode (magenta), part of the Illumina read primer 2 sequence (RP2, yellow), and the SMART IIA sequence (green). The SMART IIA sequence is used as a priming site during cDNA amplification, the Illumina RP2 sequence is used as a priming site during library amplification, and the cell barcode is used for demultiplexing pooled samples during analysis. The process works as follows: first, the template for SMARTScribe reverse transcriptase switches from the mRNA (blue wavy line) to the SMART-Seq v4 Oligonucleotide (green). After reverse transcription, the full-length cDNA is amplified by PCR with blocked Primer IIA oligonucleotides. After cDNA amplification, the presence of the barcode (magenta) allows for pooling up to 12 samples. The pooled samples are tagmented and Illumina Nextera® read primer 1 and 2 sequences are added by the Nextera Tn5 transposon (TnRP1 and TnRP2, orange and purple respectively). The 3' ends of the original mRNA are captured by selective PCR with primers for the TnRP1 and RP2 sequences. Other products of the transposon-based reaction are not amplified, either because there are no primer sites for amplification or because of suppression PCR. Cluster generation (pink and dark purple) and indexing sequences (light blue and dark blue) are added during this PCR stage to generate a library ready for sequencing on an Illumina platform.

Results  

High sensitivity of the end capture method

We used this method to sequence 12 single K562 (human immortalized myelogenous leukemia) cells in one pooled sample. The total number of reads in the pool was 21.6 million, with reads from individual cells ranging from 0.2 to 5.0 million, as seen in Table 1. This variability is due to the different quantities of cDNA generated from each cell. These reads were then used to identify expressed genes in each cell and determine the correlation between expression profiles for each cell.

Sample IDPoolIn-line Indexes
i1i2i3i4i5i6i7i8i9i10i11i12
mtRNA (%) 3.3 3.1 3.6 1.7 3.9 4.1 1.8 2.5 2.8 5.5 4.1 2.7 4.8
rRNA (%) 0.6 1.2 0.7 1.1 0.4 0.4 0.3 0.3 0.7 1.2 0.5 0.1 0.6
Uniquely mapped reads (%) 69 68 68 70 68 71 71 72 68 69 69 74 69
Total mapped reads (%) 97 96 98 97 97 98 98 98 96 97 96 98 98
Number of reads (M) 21.6 2.3 5.0 1.3 2.2 2.0 1.9 0.8 1.3 0.6 0.2 1.5 1.6

Table 1. Mapping statistics for pooled libraries from K562 single cells. K562 (human immortalized myelogenous leukemia line) cells were diluted to one cell/μl in PBS buffer and twelve single cells were isolated, checked via optical microscopy, lysed, and subjected to cDNA synthesis. The pooled libraries were sequenced on an Illumina MiSeq® instrument with 47 bp for read 1 and 26 bp for read 2. The pooled libraries were demultiplexed based on the in-line barcode sequence from read 2. All libraries were mapped with STAR v.2.3.0.1 (Dobin et al., 2013) against the human genome (hg19). The reads map to the genome at a high rate (>96%) with a small proportion mapping to rRNA or mitochondrial regions.

Gene expression analysis and cell-to-cell correlation

After obtaining the read data from the pooled cell samples, the data was analyzed to determine the number of identified genes using different cutoff values for the Counts Per Million mapped reads (CPM). As seen in Figure 2, a high number of genes were identified for all cells, with some differences due to the total number of reads varying between cells. We then determined the Pearson correlations of regularized log-transformed read-counts, shown below in Figure 3. As expected, we observed high correlations (>0.7) between all cells, with most cells demonstrating a correlation >0.9.

Number of genes identified from K562 single cells

Figure 2. Number of genes identified from K562 single cells. Mapped libraries were analyzed with CPM) generated from STAR v.2.3.0.1 (Dobin et al. 2013). The number of genes identified with different cutoffs (0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, and 7.1) for log-transformed CPM+1 are plotted. The amount of cDNA produced from each cell varies, leading to different read depths per cell. This affects the number of genes identified, as seen most obviously for sample 10 at lower expression cutoff values.

Pearson correlation heat map matrix of K562 single cells

Figure 3. Pearson correlation heat map matrix of K562 single cells. The heat map represents the Pearson correlations of  expression levels for the 12 single-cell libraries. For all comparisons, the correlation (R) was >0.8, while the majority of single-cell libraries are highly correlated (>0.9).

Verification of the end-capture method

Finally, we verified that the end-capture method was functioning correctly by determining where the majority of reads were occurring along each transcript. As seen in Figure 4, the majority of reads mapped to the last 30% of the transcripts, as expected with our end-capture method.

Gene body coverage analysis height=

Figure 4. Gene body coverage analysis. Once the reads were mapped to the human genome, gene body coverage analysis was performed to assess the ability of the methods to capture the 3' ends of the cDNA. The majority of reads across all transcripts mapped to the last 30% of the transcripts (normalized in length to 100%).

Conclusion  

The SMART-Seq v4 3' DE Kit provides a more cost-effective method for identifying differentially expressed genes in single cells. This will enable DE experiments with higher sensitivity for scientists interested in quickly identifying differences between cells without sequencing the entire transcriptome. Our method demonstrates great sensitivity and delivers high-quality, robust, and reproducible transcriptomic data.

Methods  

In the experiments described here, K562 cells (human leukemia cell line) were isolated, evaluated via optical microscopy, lysed, and processed for cDNA library construction. This was accomplished by diluting the cells in PBS to 1 cell/µl, then spotting 1 µl drops in each well of a 96-well plate and visually choosing single cells to pick and process. cDNA libraries were prepared from single cells according to the protocol provided with the SMART-Seq v4 3' DE Kit.

References  

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 

Heaton, N. S. et al. Long-term survival of influenza virus infected club cells drives immunopathology. J. Exp. Med. 211, 1707–14 (2014). 

Henley, B. M. et al. Transcriptional regulation by nicotine in dopaminergic neurons. Biochem. Pharmacol. 86, 1074–83 (2013).

Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–60 (2014).

Additional reading about SMART technology:
SMART-Seq v4 sensitivity is discussed in our SMART-Seq v4 single-cell tech note and additional data on sensitivity across a wide range of GC content is discussed in our Fluidigm C1 single cell tech note.

Related Products

Cat. # Product Size Price License Quantity Details
635040 SMART-Seq® mRNA 3’ DE 96 Rxns USD $4081.00

License Statement

ID Number  
M54 This product is covered by the claims of U.S. Patent Nos. 7,704,713 and its foreign counterparts. 
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by e-mail at licensing@takarabio.com.
434 This Product is protected by one or more patents from the family consisting of: US10870848, and any corresponding patents, continuations, divisionals, patent applications, and foreign filings sharing priority with the same family.

SMART-Seq mRNA 3′ DE includes the components to generate high-quality cDNA from 1–100 intact cells or ultralow amounts of total RNA. The cDNA generated from each reaction has a cell barcode that allows for pooling downstream. This kit uses the SMART-Seq mRNA technology with locked nucleic acids (LNA) for excellent sensitivity and reproducibility. Additionally, this kit includes a complete set of index primers for downstream library preparation. By focusing the majority of cDNA fragments on the 3′ end of mRNA transcripts, this kit enables differential expression (DE) analysis with fewer reads, reducing the cost of discovery. When combined with the Illumina Nextera® XT DNA Library Preparation Kit, this kit results in a library ready for sequencing on Illumina platforms.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

635040: SMART-Seq v4 3' DE Kit

635040: SMART-Seq v4 3' DE Kit
635041 SMART-Seq® mRNA 3' DE 192 Rxns Inquire for Quotation

License Statement

ID Number  
M54 This product is covered by the claims of U.S. Patent Nos. 7,704,713 and its foreign counterparts. 
275 SMART-Seq2 Technology. This product is sold under exclusive license from Ludwig Institute of Cancer Research, Ltd. and is covered by US Patent No. 10266894, Japanese Patent No. 6336080, and European Patent No. 3036336, and pending U.S. patent application and/or pending claims of foreign counterparts. For license information, please contact a Takara Bio USA, Inc. licensing representative by e-mail at licensing@takarabio.com.
434 This Product is protected by one or more patents from the family consisting of: US10870848, and any corresponding patents, continuations, divisionals, patent applications, and foreign filings sharing priority with the same family.
*

SMART-Seq mRNA 3′ DE includes the components to generate high-quality cDNA from 1–100 intact cells or ultralow amounts of total RNA. The cDNA generated from each reaction has a cell barcode that allows for pooling downstream. This kit uses the SMART-Seq mRNA technology with locked nucleic acids (LNA) for excellent sensitivity and reproducibility. Additionally, this kit includes a complete set of index primers for downstream library preparation. By focusing the majority of cDNA fragments on the 3′ end of mRNA transcripts, this kit enables differential expression (DE) analysis with fewer reads, reducing the cost of discovery. When combined with the Illumina Nextera® XT DNA Library Preparation Kit, this kit results in a library ready for sequencing on Illumina platforms.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components

*You must be logged in to a Purchasing Account in order to purchase these products online, since the purchase of these products may be restricted depending on your account type. Researchers at not-for-profit accounts receive a limited use license with their purchase of the product. Researchers at for-profit accounts must obtain a license prior to purchase. For details please contact licensing@takarabio.com.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us