

Driving biomarker discovery with high-throughput single-cell genome and transcriptome profiling

Andrew Farmer, D.Phil. CSO/Head of R&D

For Research Use Only. Not for use in diagnostic procedures. © 2024 Takara Bio Inc. All rights reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio: core capabilities

that's **GOOD** science!

NGS

- SMARTer[®] and SMART-Seq[®] RNA-seq library preparation kits
- PicoPLEX[®] and ThruPLEX[®] DNA-seq library preparation kits

PCR, qPCR, RT-PCR

- TaKaRa Ex Premier[™], LA Taq[™], PrimeSTAR[®] GXL, SeqAmp[™], Titanium[®] polymerases & PrimeScript[™] RT
- EcoDry[™] lyophilized enzymes and kits

Cloning

In-Fusion[®] Snap Assembly Cloning

Nucleic acid purification

Gene delivery

- Lenti-X[™], Adeno-X[™], Retro-X[™], and AAVpro[®] systems | Xfect[™] Transfection Reagent
- RetroNectin® reagent

Functional genomics

- Tet systems and iDimerize[™] systems
- Guide-it[™] CRISPR/Cas9 genome editing products
- Living Colors® fluorescent proteins

Protein expression & purification

• TALON[®] and His60 Ni protein purification

OEM

The power of sensitivity and full gene-body coverage

Log-transformed counts of SNVs were detected using different sequencing platforms.

Figure adapted from "Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data." (Liu F. et al. 2019, *Genome Biol*) under a <u>CC</u> <u>BY 4.0</u> license.

Employing SMART-Seq chemistry, the **Allen Institute for Brain Science** published a preprint paper that was later published in *Nature*.

Figure adapted from "Isoform cell type specificity in the mouse primary motor cortex" (Booeshaghi et al. 2020, *bioRxiv*) Image used under <u>CC BY 4.0</u> license.

Sensitive, uniform, and reproducible whole genome amplification (WGA) with PicoPLEX technology

Most even

PTA provided the broadest amplification, but PicoPLEX application provided the most even amplification (2023).

Most reliable

scWGA genome coverage analysis: PicoPLEX kit was the most reliable, with the tightest interquartile region (IQR) of all kits and no failed cells.

Most reproducible

scWGA reproducibility analysis: PicoPLEX application demonstrated high reproducibility for all cells.

Figure adapted from "Single-cell somatic copy number variants in brain using different amplification methods and reference genomes" (Kalef-Ezra. et al. 2023, *bioRxiv*) under <u>CC BY 4.0</u> license.

Figures adapted from "Comparison of seven single cell whole genome amplification commercial kits using targeted sequencing" (Biezuner et al. 2021, *Sci. Rep.*) under a <u>CC BY 4.0</u> license.

Advances in single-cell RNA-seq scale over time

Figure adapted from "Advances in single-cell RNA sequencing and its applications in cancer research" (Huang et al. 2023, *J. Hematol. Oncol.*) under a <u>CC BY 4.0</u> license.

Scaled next-generation single-cell biomarker discovery

Shasta™ Single-Cell System

Cogent[™] NGS Analysis Pipeline and Discovery Software

Shasta Total RNA-Seq Kit

- Analyze up to 100,000 single cells per run with outstanding sensitivity and full gene body coverage
- Uncover multiple RNA biotypes
- Detect splicing isoforms and gene fusions
- Use bioinformatics tools to decode expression patterns of protein-coding and noncoding genes

Shasta Whole-Genome Amplification Kit

- Analyze over 1,500 single cells per run
- Profile copy number variation (CNV) data, including chromosomal aneuploidies, and single-nucleotide variation (SNV) data
- Resolve tumor heterogeneity and track clonal evolution with user-friendly bioinformatics tools

Shasta Total RNA-Seq: overview

Shasta Total RNA-Seq

Two-day workflow

- ✓ Random-primed total RNA-seq
- ✓ Full-length gene-body coverage

Novel indexing strategy

 Reduced cell loss, workflow time, and reagent costs

Shasta Single-Cell System

High-throughput automation

- ✓ ~100,000 cells with low doublet rate
- ✓ Up to 12 samples per experiment

Cogent NGS pipeline

Free analysis tools

- Protein-coding and noncoding gene pipelines
- ✓ Publication-quality figures

Shasta Total RNA-Seq workflow

Achieve outstanding gene sensitivity, low doublet rates, and full gene-body coverage

Case study: discovering biomarkers regulated by p53 and epitherapy treatment

Created with BioRender.com.

Achieved outstanding sensitivity for both genes and transcripts

- ✓ Analyzed ~11,000 cells
- Detected ~10,000 genes and ~40,000 transcripts per sample at a sequencing depth of 100,000 reads/cell

Cellular phenotype associated with differentially expressed IncRNAs

IncRNA: analysis done using Cogent AP with LncBook v2 reference containing only ncRNAs.

Cellular phenotype associated with differentially expressed IncRNAs

() TakaRa

September 11, 2024

Automated, high-throughput solution for single-cell WGA

Shasta WGA Kit

- ✓ High-throughput WGA Process up to 1,500 cells per run
- Lower sequencing cost
 Analyze CNV, SNV, and structural variation at low depth
- ✓ Automated workflow on the Shasta instrument Obtain library in one day
- Leading chemistry for uniformity and reproducibility
 Take advantage of PicoPLEX WGA chemistry
- End-to-end solution

Use free Cogent bioinformatics tools

Shasta WGA workflow

DAY 1: Laborious pipetting replaced by automatic dispensing

Created with BioRender.com

Get CNV profiles of >1,000 cells in one run

250,000 reads/cell, 2 x 75 bp, 1Mb average bin size

- 1,124 single cells
- 4 cell lines;
 - GM05067
 - GM22601
 - GM12878
 - K562

Get CNV profiles of >1,000 cells in one run

250,000 reads/cell, 2 x 75 bp, 1Mb average bin size

Get CNV profiles of >1,000 cells in one run

250,000 reads/cell, 2 x 75 bp, 1Mb average bin size

TakaRa

Cells can be clustered based on their CNV profiles

Dou, J., et al. Single-nucleotide variant calling in single-cell sequencing data with Monopogen. *Nat Biotechnol* 42, (2024). https://doi.org/10.1038/s41587-023-01873-x

Pseudobulk analysis identifies putative SNVs in single cells

Identification of putative SNV for each single cell based on pseudobulk SNV analysis using Monopogen.

Dou, J., et al. Single-nucleotide variant calling in single-cell sequencing data with Monopogen. Nat Biotechnol 42, (2024). <u>https://doi.org/10.1038/s41587-023-01873-x</u>

Find CNV events in small subclones in a heterogeneous tumor sample

2013).

- Dissociated cells from Stage III (858 cells) clear-cell renal-cell carcinoma (ccRCC) tumor and adjacent normal tissue
- ~370,000 reads/cell, 2 x 75 bp

mutations (Sato et al. 2013). 10 11 12 13 14 15 16 17 18 19 20 22 9 teger Copy Number Profile for Sample "DTC_CTAGCGACTCATGCTG dicted Ploidy = 1.95 Dissociated tumor cells Integer Copy Number Profile for Sample "DTC ATACGTTCACCGAATT DTC Predicted Ploidy = 1.95 Normal Normal cells CCN G The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, (2013). https://doi.org/10.1038/nature12222

> Sato, Y., et al. Integrated molecular analysis of clear-cell renal cell carcinoma. *Nat Genet* 45, (2013). https://doi.org/10.1038/ng.2699

-3p: a cytogenic hallmark of ccRCC, encompassing four commonly

mutated genes: VHL, PBRM1, BAP1, and SETD2 (Creighton et al.

+5q: associated with better patient survival (Creighton et al. 2013).

Partial or complete loss of chr. 8: associated with TCEB1

More cells. More biomarkers. More discoveries. More breakthroughs!

- First-to-market high-throughput WGA and high-throughput Total RNA-seq
- Retain coverage and sensitivity at scale without compromise
- Integrate automation, chemistries, and bioinformatics solutions
- Discover the biomarkers you are missing

that's GOOD Science!®