We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About

Close

  • ‹ Back to DNA-seq
  • Comparing ThruPLEX HV PLUS to Kapa and NEBNext
  • Improvements to ThruPLEX HV
  • ThruPLEX HV outperforms NEBNext Ultra II
  • Accurate detection of low-frequency variants using molecular tags
  • Streamlined DNA-seq from challenging samples
  • Low cell number ChIP-seq using SMARTer ThruPLEX
  • Cell-free DNA sequencing
  • Sequencing analysis of low-frequency mutations in cfDNA
  • DNA-seq from FFPE samples
  • Low-input whole-exome sequencing
  • Tag-seq variant detection
  • Low-volume DNA shearing for SMARTer ThruPLEX library prep
ThruPLEX Plasma-Seq product page ThruPLEX Plasma-Seq product page (Legacy)
Advancing cancer research with plasma-seq Blog: Advancing cancer research with plasma-seq
Home › Learning centers › Next-generation sequencing › Technical notes › DNA-seq › Cell-free DNA sequencing

Technical notes

  • Single-cell RNA- and DNA-seq
    • All-in-one cDNA synthesis and library prep from single cells
    • Highest sensitivity for single-cell mRNA-seq
    • Stranded libraries from single cells
    • Streamlined single-cell mRNA-seq
    • Full-length mRNA libraries from single cells (SMART-Seq v4)
    • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
    • Full-length mRNA libraries from single cells for Fluidigm C1 (SMART-Seq v4)
    • Full-length single-cell library method comparison
    • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
    • Next-gen WGA method for CNV and SNV detection from single cells
  • RNA-seq
    • Stranded libraries from picogram-input total RNA (v3)
    • Automation-friendly, all-in-one cDNA synthesis and library prep
    • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
    • Stranded libraries from picogram-input total RNA (v2)
    • Stranded libraries from FFPE inputs (v2)
    • Stranded libraries from 100 ng - 1 ug total RNA
    • Stranded libraries from 100 pg-100 ng total RNA
    • Stranded libraries from picogram-input total RNA (v1)
    • Stranded RNA-seq competitor kit comparison
    • Nonstranded libraries from FFPE inputs
    • Sensitive capture of full-length transcript information with targeted RNA-seq
  • DNA-seq
    • Comparing ThruPLEX HV PLUS to Kapa and NEBNext
    • Improvements to ThruPLEX HV
    • ThruPLEX HV outperforms NEBNext Ultra II
    • Accurate detection of low-frequency variants using molecular tags
    • Streamlined DNA-seq from challenging samples
    • Low cell number ChIP-seq using SMARTer ThruPLEX
    • Cell-free DNA sequencing
    • Sequencing analysis of low-frequency mutations in cfDNA
    • DNA-seq from FFPE samples
    • Low-input whole-exome sequencing
    • Tag-seq variant detection
    • Low-volume DNA shearing for SMARTer ThruPLEX library prep
  • Immune profiling
    • BCR repertoire profiling from human samples (bulk)
    • Improved TCR repertoire profiling from human samples (bulk)
    • TCR repertoire profiling from human samples (single cells)
    • TCR repertoire profiling from human samples (bulk)
    • TCR repertoire profiling from mouse samples (bulk)
    • BCR repertoire profiling from mouse samples (bulk)
  • Epigenetics and smRNA-seq
    • Full-length small RNA libraries
    • ChIP-seq libraries for transcription factor analysis
    • ChIP-seq libraries from ssDNA
    • Methylated DNA-seq
New products
Need help?
Contact Sales
ThruPLEX Plasma-Seq product page ThruPLEX Plasma-Seq product page (Legacy)
Advancing cancer research with plasma-seq Blog: Advancing cancer research with plasma-seq
Tech Note

An optimized solution for cell-free DNA library preparation

  • Highly diverse libraries with low duplicate rates
  • Unbiased GC coverage
  • High-efficiency identification of novel allele variants
Introduction Results Conclusions Methods References

Introduction  

Cell-free DNA (cfDNA), circulating in blood and found in the plasma component, was first discovered in the 1940s (Mandel and Metais 1948) and has been the subject of renewed attention in the research community due to the easy access to its genetic information. The main source of cfDNA is the apoptotic turnover of hematopoietic cells. DNA fragments are generated by the apoptotic endonuclease caspase-activated DNase (CAD) digesting the chromosomal DNA at regular distances in their nucleosomal arrangement around histones, leading to fragments of various sizes. The cfDNA of primary interest exists as fragments of about 170 bp in length.

This genetic information is being used by translational scientists to better understand the progression of cancer. Circulating tumor DNA (ctDNA) derived from malignant tumors is a component of cfDNA, and libraries prepared from these samples contain genetic information of the tumor (Shaw and Stebbing 2014; Patel and Tsui 2015). For example, Murtaza and colleagues at CRUK performed a research study in which cfDNA libraries were prepared following therapy, and the genetic evolution of several metastatic cancers was followed. One of the major limitations of utilizing next-generation sequencing (NGS) with cfDNA is the difficulty of making sensitive libraries from the relatively low abundance of cfDNA obtained from plasma. Concentrations of cfDNA are quite variable, ranging from 1–20 ng/ml of plasma, and the component of interest is fractionally represented.

SMARTer ThruPLEX technology, which has a history of use in low-input library preparation (Murtaza et al. 2013; Kitzman et al. 2012), has been reformulated and optimized specifically for cfDNA to maximize the library complexity and to preserve the GC representation of the input DNA, with input levels starting at less than 1 ng and ranging to over 30 ng. This new member of the SMARTer ThruPLEX product line, the SMARTer ThruPLEX Plasma-Seq Kit, is capable of converting cfDNA into high-complexity libraries for Illumina NGS platforms. The three-step, single-tube workflow yields indexed libraries from purified cfDNA within two hours (Figure 1). The generated libraries can be used directly for whole genome sequencing applications or enriched using a custom panel for the leading target enrichment platforms, including Agilent SureSelect and Roche NimbleGen SeqCap EZ.

Figure 1. SMARTer ThruPLEX Plasma-Seq single-tube workflow.

In the present study, we demonstrate the performance and reproducibility of the SMARTer ThruPLEX Plasma-Seq Kit in comparison to KAPA Hyper Prep Kit and NEBNext Ultra DNA Library Prep Kit. Furthermore, we show enrichment data that provides a richer view of the genetic variation within the sample.

Results  

Preparation of cell-free DNA libraries

There are several library preparation kits for Illumina NGS platforms available, but none have been designed specifically for cfDNA. The SMARTer ThruPLEX Plasma-Seq Kit can create highly reproducible libraries over a wide input range of cfDNA, from ≤1 ng to 30 ng. Preparation of cfDNA for NGS has usually been done by home-brew kits or kits initially designed to work with mechanically sheared gDNA 200–600 bp in size. Many kits, including the Illumina TruSeq® Nano kit, require a minimum starting amount of 100 ng of DNA, while kits that employ enzymatic fragmentation such as Nextera® DNA Library Prep Kit or KAPA Hyper Plus are not compatible with this type of sample due to the small initial size of cfDNA. In fact, shearing of the cfDNA is unnecessary.

The two kits that were selected for the current test can create libraries from as little as 1 ng (KAPA Hyper Prep Kit) or 5 ng (NEBNext Ultra DNA Library Prep Kit). The SMARTer ThruPLEX Plasma-Seq Kit is the only kit designed and optimized to efficiently and reproducibly repair, ligate, and amplify NGS libraries from cfDNA. Key to this efficiency and reproducibility for working with DNA fragmented as a result of apoptosis is the use of stem-loop adapters to make libraries, thus eliminating cleanup steps and background problems caused by y-adapters. The SMARTer ThruPLEX Plasma-Seq Kit also offers several advantages in the workflow when compared to the alternative kits (Table I). Starting with the isolated cfDNA, the SMARTer ThruPLEX workflow creates indexed libraries in a single tube in three steps in about two hours. No sample transfers or intermediate cleanups are necessary. All components including adapters and indexing reagents are provided with the kit, and no optimization is required. Both KAPA Hyper and the NEBNext Ultra have intermediate cleanup steps; both require the purchase of adapters and/or indexing oligonucleotides that often require optimization of concentration to control the number of adapter dimers and other artifacts. Additionally, for low-input amounts of DNA (<25 ng), KAPA recommends optimizing the adapter concentration.

SMARTer ThruPLEX Plasma-SeqNEBNext UltraKAPA Hyper
Recommended input range 1–30 ng 5–100 ng 1–1,000 ng
Total steps 3 4 4
Workflow 1. End repair 1. End repair 1. End repair
2. Adapter ligation 2. Adapter ligation 2. Adapter ligation
3. Cleanup 3. Cleanup
3. Library amplification 4. Library amplification 4. Library amplification
Total hands-on time 15 min 50 min 50 min
Total kit time ~2 hr ~3 hr ~2.7 hr
Sample transfer steps 0 1 1

Table I. SMARTer ThruPLEX Plasma-Seq workflow and advantages. The SMARTer ThruPLEX Plasma-Seq Kit, which includes optimized adapters and indexing reagents, converts cfDNA from plasma samples to indexed NGS libraries in three simple steps in a single tube or well in about two hours; no sample transfer or cleanup steps are required.

Highest diversity and fewest unmapped reads from cfDNA

Libraries created with each of these products were compared on a number of metrics, including library diversity, duplicate reads, and unmapped reads. The SMARTer ThruPLEX Plasma-Seq Kit yielded significantly higher library diversity while, conversely, a very low percentage of duplicate reads was detected in a low-pass sequencing analysis (Figure 2). The SMARTer ThruPLEX duplication rate was significantly lower than that of the other kits, indicating that with deeper sequencing runs, the SMARTer ThruPLEX Plasma-Seq Kit would provide more usable data. SMARTer ThruPLEX also had the fewest unmapped reads. These metrics all indicate that the SMARTer ThruPLEX Plasma-Seq Kit would provide more usable data.

Diverse, reproducible NGS libraries.

Figure 2. Diverse, reproducible NGS libraries. Libraries created with the SMARTer ThruPLEX Plasma-Seq Kit yielded more unique molecules (Panel A), fewer duplicate reads (Panel B), and negligible unmapped reads (Panel C). Libraries were sequenced on an Illumina NextSeq® 500 as a paired-end run with 17M to 25M reads per library. Duplication rates were calculated after down-sampling the data to 17M reads per library. Representative data from each sample is shown.

Reproducible, unbiased GC coverage

In GC-bias analysis (Figure 3), the SMARTer ThruPLEX Plasma-Seq Kit showed well-balanced coverage of the genome between 20% and 70% of GC content. Furthermore, the SMARTer ThruPLEX libraries showed minimal variability across nine individual plasma samples tested. Identical samples were used to prepare libraries with KAPA Hyper, and there was a lack of coverage in the AT-rich region. A separate set of four samples was used to generate libraries for NEBNext Ultra and those, too, lacked the AT coverage. Since the human genome has an average GC content of approximately 42%, libraries prepared with the SMARTer ThruPLEX Plasma-Seq Kit best represent the original genetic content of the sample.

Reproducible, unbiased GC Coverage

Figure 3. Reproducible, unbiased GC coverage. The SMARTer ThruPLEX Plasma-Seq Kit provided the most reproducible and unbiased GC coverage across the human genome, showing minimal variability across the nine plasma samples tested. Libraries were prepared from cfDNA isolated from an equivalent of 1 ml of plasma sample and sequenced on an Illumina NextSeq 500. Four separate plasma samples were used to construct the NEBNext Ultra libraries.

Enrichment performance

To better evaluate the performance of the SMARTer ThruPLEX Plasma-Seq Kit, libraries were enriched using the Agilent SureSelectXT2 ClearSeq Human DNA Kinome probe set (Cat. # 5190-4676) according to the SMARTer ThruPLEX SureSelectXT2 protocol in the presence of the Universal xGen Blocking Oligos (IDT). Based on approximately 5M total reads for each sample (Table II), a 600-fold enrichment of the human kinome (panel size 3.2 Mbp) was obtained. At 30X coverage, an average of 77% of bases were covered for the cfDNA samples used in this experiment (Figure 4). Using this data, a highly concordant rate between the replicates for any given sample was found, supporting the ability of the SMARTer ThruPLEX Plasma-Seq Kit to create libraries that can be used to identify novel allele variants with high efficiency. The identity of the variant calls was confirmed by identifying 98–99% of single-nucleotide polymorphisms (SNPs) in the dbSNP database (Table II). The other 1–2% were novel calls that were generally common to all three replicates of each plasma DNA sample, supporting their biological validity.

Targeted sequencing metrics of ThruPLEX Plasma-seq libraries enriched using the SureSelectXT2 ClearSeq Human DNA Kinome Panel.

Figure 4. Outstanding target enrichment performance. ThruPLEX Plasma-Seq libraries were captured at high efficiency and generated data with deep coverage of the kinome for mutation detection. Libraries were prepared from 3 plasma samples at input amounts of 5 ng, 6.5 ng, and 10 ng in triplicate, and targeted sequencing was carried out on an Illumina MiSeq® using samples enriched with the ClearSeq Human DNA Kinome Panel for SureSelectXT2. On average, 5 M reads were generated per library. Selected bases were successfully captured bases that were in or within 250 bp of the baits.

Sample A
Replicate 1 Replicate 2 Replicate 3
Total reads 4,729,478 4,991,598 4,859,650
Total high-quality uniquely mapped reads 3,309,675 3,645,999 3,392,824
Fold enrichment 645 606 642
Total number of variants identified 1,750 1,792 1,793
Percent of SNPs in dbSNP database 98.9% 98.8% 98.8%

Table II. One SMARTer ThruPLEX Plasma-Seq library that was used in kinome capture (Figure 4) was further analyzed for SNP coverage. Results above indicate the number of variants captured and percent of SNPs identified in the dbSNP database are sufficient to allow mutation detection. Libraries were prepared in triplicate from plasma Sample A, enriched using the SureSelectXT2 ClearSeq Human DNA Kinome Panel, and sequenced on an Illumina MiSeq platform.

Conclusions  

The SMARTer ThruPLEX Plasma-Seq Kit was specifically developed to produce high-quality libraries from cfDNA. Both the repair and ligation reactions have been reformulated to provide superior results with cfDNA. The optimized repair reaction ensures that the ends of each fragment are blunt and polished to provide high ligation efficiency. Likewise, the ligation reaction has been enhanced for cfDNA molecules to provide maximum ligation of the stem-loop adaptor. The elimination of an intermediate cleanup step and the lack of transfer steps minimize loss of molecules, augmenting the formulation changes to provide this cfDNA-specific product. Our data indicate that the SMARTer ThruPLEX Plasma-Seq Kit yields better libraries in comparison to its competitors, in terms of diversity, GC bias, and duplicate rates. These libraries are suitable for targeted enrichment and will provide a sensitive tool to allow scientists to easily access and analyze the genetic content of samples from a variety of experimental conditions.

Methods  

Plasma sample preparation

Plasma collection was performed by Medical Research Networx, LLC. Blood was collected into BD Vacutainer EDTA tubes and inverted 10 times to mix. Vacutainer tubes were centrifuged (4°C; 12 min; 1,500g) with the centrifuge brake off. The plasma layer was then removed, taking care not to disturb the buffy coat, and placed into a 15 ml conical tube. The samples were then centrifuged again (4°C; 12 min; 1,500g) before transferring the plasma to a new tube, leaving approximately 0.5 ml to minimize leukocyte carry over. Processed plasma samples were stored at –80°C until DNA was extracted.

Cell-free DNA isolation

Qiagen QIAamp Circulating Nucleic Acid Kit was used according to the manufacturer's protocol without the use of carrier RNA to isolate cfDNA from 5 ml aliquots of plasma samples.

DNA quality control and quantification

Extracted cfDNA eluates from the same individual (15 ml of plasma) were pooled, and the quality of these samples was evaluated on an Agilent BioAnalyzer. The concentration of these samples was measured using Qubit (Thermo Fisher Scientific).

Library preparation

Libraries were prepared from the cfDNA samples following the manufacturer's instructions using the SMARTer ThruPLEX Plasma-Seq Kit with dual indexes, the NEBNext Ultra DNA Library Prep Kit (New England Biolabs) with dual indexes, and the KAPA Hyper Prep Kit (KAPA Biosystems) with Roche Nimblegen SeqCap EZ adapters diluted to concentrations as recommended in the KAPA protocol for different input amounts. Amplified libraries were pooled and then purified using AMPure XP beads (Beckman Coulter) and eluted in 30 μl of low TE buffer for whole genome sequencing (WGS) or 50 μl of ultrapure water for enrichment. Purified libraries were assessed on the Agilent BioAnalyzer and quantified by qPCR using the KAPA Library Quantification Kit from Bio-Rad Laboratories (KAPA Biosystems). Two WGS experiments and a kinome enrichment were performed (see Table III). For the first, libraries were prepared from three individual plasma samples at input amounts of 0.1 ng, 1 ng, and 30 ng. The amount of mononucleosomal DNA in each sample, as measured by the Bioanalyzer, was 0.09 ng, 0.62 ng, and 15.44 ng. In the second WGS experiment, nine individual plasma samples were tested. cfDNA from a 1 ml aliquot of plasma sample was used to prepare each library; input amounts ranged from 5 ng to 40 ng. For the kinome sequencing experiment, two individual plasma samples were used at input amounts of 6.5 ng and 10 ng, in triplicate.

Whole genome sequencingKinome sequencing
Samples Sample 1 Sample 2 Sample 3 Samples 4–12 Sample A Sample B
Input 0.1 ng 1 ng 30 ng cfDNA from 1 ml of plasma (5–40 ng) 6.5 ng 10 ng

Table III. Plasma samples and input DNA amount. In the first whole genome sequencing (WGS) experiment, three individual plasma samples were used to construct SMARTer ThruPLEX Plasma-Seq libraries at the indicated input amounts. A second WGS experiment used nine individual plasma samples in triplicate. Two separate plasma samples were used for kinome sequencing.

Enrichment

Hybridization and capture of the indexed libraries were carried out using the SureSelectXT2 ClearSeq Human DNA Kinome Panel. Briefly, six indexed SMARTer ThruPLEX Plasma-Seq libraries, hybridization buffer mix, blocking mix, RNase block, and the ClearSeq Kinome Panel were combined according to the SureSelectXT2 protocol. In addition, 1 μl (1 nmol) each of i5 and i7 xGen Universal Blocking Oligo - TS HT (Integrated DNA Technologies) were added into the hybridization reaction which was carried out for 48 hours. Target capture, washes, and final amplification of the enriched libraries were performed according to the SureSelectXT2 protocol to obtain captured libraries ready for Illumina sequencing.

Illumina sequencing

Pooled libraries were quantified using the KAPA Library Quantification Kit and loaded onto an Illumina MiSeq or NextSeq 500 flow cell for sequencing. Approximately 17M to 25M reads per library were collected for whole-genome sequencing and 5M reads per library for kinome sequencing.

Data analysis

Sequences were analyzed on the DNANexus platform. Reads were aligned to the human genome, hg19, using the Burrows-Wheeler Algorithm, BWAMEM6, to generate BAM files. For WGS data, reads were first down-sampled to equal numbers across all samples. Down-sampled BAM files were assessed using Picard Mark Duplicates7 to count duplicate reads and estimate diversity (estimated library size), and Picard Collect GC Metrics was used to determine biases based on sequence GC content. For kinome sequencing data, after mapping with BWA-MEM, Picard CalculateHsMetrics was used to determine capture quality metrics. For SNV analysis, Agilent SureCall was used to identify variants within the targeted exons of the kinome, and Illumina Variant Caller was used to annotate variants.

References  

Broad Institute. Picard Tools - A set of command line tools (in Java) for manipulating high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF. <http://broadinstitute.github.io/picard/>

Kitzman, J. O. et al. Noninvasive Whole-Genome Sequencing of a Human Fetus. Sci. Transl. Med. 4, 137ra76–137ra76 (2012).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

Mandel, P. & Metais, P. Les acides nucléiques du plasma sanguin chez l'homme. C. R. Seances Soc. Biol. Fil. 142, 241–3 (1948).

Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

Patel, K. M. & Tsui, D. W. Y. The translational potential of circulating tumour DNA in oncology. Clin. Biochem. 48, 957–961 (2015).

Shaw, J. A. & Stebbing, J. Circulating free DNA in the management of breast cancer. Ann. Transl. Med. 2, 3 (2014).

Related Products

Cat. # Product Size Price License Quantity Details
R400679 ThruPLEX® Plasma-Seq Kit 24 Rxns USD $693.00

License Statement

ID Number  
M54 This product is covered by the claims of U.S. Patent Nos. 7,704,713 and its foreign counterparts. 
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The ThruPLEX Plasma-Seq Kit builds on the innovative ThruPLEX chemistry to generate high-complexity DNA libraries from cell-free DNA isolated from plasma. Single index, dual index, and unique dual index kits are available and must be purchased separately. This product contains reagents for 24 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

R400679: ThruPLEX Plasma-Seq Kit

R400679: ThruPLEX Plasma-Seq Kit
R400680 ThruPLEX® Plasma-Seq Kit 48 Rxns USD $1311.00

License Statement

ID Number  
M54 This product is covered by the claims of U.S. Patent Nos. 7,704,713 and its foreign counterparts. 
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The ThruPLEX Plasma-Seq Kit builds on the innovative ThruPLEX chemistry to generate high-complexity DNA libraries from cell-free DNA isolated from plasma. Single index, dual index, and unique dual index kits are available and must be purchased separately. This product contains reagents for 48 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

R400680: ThruPLEX Plasma-Seq Kit

R400680: ThruPLEX Plasma-Seq Kit
R400681 ThruPLEX® Plasma-Seq Kit 96 Rxns USD $2275.00

License Statement

ID Number  
M54 This product is covered by the claims of U.S. Patent Nos. 7,704,713 and its foreign counterparts. 
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The ThruPLEX Plasma-Seq Kit builds on the innovative ThruPLEX chemistry to generate high-complexity DNA libraries from cell-free DNA isolated from plasma. Single index, dual index, and unique dual index kits are available and must be purchased separately. This product contains reagents for 96 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components Image Data

Back

R400681: ThruPLEX Plasma-Seq Kit

R400681: ThruPLEX Plasma-Seq Kit
R400682 ThruPLEX® Plasma-Seq Kit 480 Rxns USD $10877.00

License Statement

ID Number  
M54 This product is covered by the claims of U.S. Patent Nos. 7,704,713 and its foreign counterparts. 
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The ThruPLEX Plasma-Seq Kit builds on the innovative ThruPLEX chemistry to generate high-complexity DNA libraries from cell-free DNA isolated from plasma. Single index, dual index, and unique dual index kits are available and must be purchased separately. This product is composed of five 96-reaction kits (Cat. # R400681), 480 reactions total, of ThruPLEX Plasma-Seq reagents.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components


See what our customers are saying about SMARTer ThruPLEX Plasma-seq technology!

"Your ThruPLEX Plasma-seq kit is the easiest to follow and has the most streamlined protocol (importantly with the fewest clean-up steps). We successfully made libraries from 1 ng input in this trial."
—Dr. Charlie Massie, UNIVERSITY OF CAMBRIDGE

Isolation of cfDNA from plasma

cfDNA isolation from up to 10 ml of plasma

NucleoSnap cfDNA & NucleoMag cfDNA

  • Consistent recovery of fragmented cfDNA ≥50 bp from plasma obtained in EDTA or Cell-Free DNA BCT tubes
  • Efficient removal of PCR inhibitors regardless of input volume
  • Convenient manual or automated processing using snap-off columns or magnetic beads
  • Suitable for downstream applications such as qPCR and NGS
Single prep High throughput

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2020 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
  • Corporate development
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

©2021 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Drug discovery
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Immune profiling
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Publications
  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • Apollo system
  • ICELL8 system and software
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Whole genome amplification
  • Immune profiling
  • Bioinformatics tools
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • RNA extraction and analysis for real-time qPCR
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Cell biology assays
  • Extracellular vesicle isolation
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Signal transduction
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • GoStix Plus special offers
  • PCR samples
Vaccine development

Vaccine development

The rapid spread of severe infections by viruses such as SARS-CoV-2, HIV, H1N1, Ebola, and Zika has highlighted the critical need for the rapid development of vaccines against previously unknown pathogens to deal with pandemics such as COVID-19 effectively.

Takara Bio is proud to be on the front line in the fight to defeat the novel coronavirus by enabling innovative vaccine development. This section discusses tools and techniques to overcome the challenges faced during the vaccine development process.

Learn how our products help speed up vaccine development

  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • Apollo library prep system introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Product line overview
  • Technical notes
  • FAQs and tips
  • Bioinformatics resources
  • Newsletters
  • Webinars
  • Citations
  • Posters
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Overview
  • Technical notes
  • FAQs
  • Stem cell research
  • Protocols
  • Applications
  • Technical notes
  • Webinars
  • Videos
  • Citations
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • Automated DNA and RNA purification
  • RNA purification
  • Hard-to-lyse samples
  • cDNA synthesis
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Cloning
  • In-Fusion Cloning: general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and tech notes
  • Cell biology assays
  • Extracellular vesicle isolation
  • Technical notes
  • FAQs
  • Citations
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Protein research
  • Capturem technology
  • Antibody purification
  • His-tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Antibodies and ELISA
Capturem Trypsin for a rapid, efficient mass spectometry workflow at room temperature.

Speed up your mass spec workflow

Capturem Trypsin provides rapid, efficient, and complete digestion of protein samples, allowing an uninterrupted mass spectometry workflow at room temperature for downstream protein analysis. This product utilizes our novel Capturem technology in a spin column format with membrane-immobilized trypsin. Capturem Trypsin Columns may be used to completely digest protein samples in less than a minute with digestion efficiencies (protein coverage) comparable to or better than those obtained using in-solution trypsin digestion.

Capturem trypsin technology

  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Corporate development
  • Partnering & OEM solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Webinars
  • NGS: biomarkers and oncology
  • NGS: immunology
  • Stem cells
  • Real-time PCR
  • Gene function
  • Protein science
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

Learn more

  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Our history
  • Announcements
  • Events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Trademarks
  • License statements
  • Quality statement
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Need help?
  • Website FAQs
Best-in-class products, expert support, superior value

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop best-in-class products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
  • Home
  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, TBUSA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • COVID-19 research
  • Drug discovery
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Immune profiling
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Publications
  • Automation systems
  • SmartChip Real-Time PCR System, chips, and reagents
  • Apollo system
  • ICELL8 system and software
  • Next-generation sequencing
  • RNA-seq
  • DNA-seq
  • Whole genome amplification
  • Immune profiling
  • Epigenetics and small RNA sequencing
  • NGS accessories
  • Bioinformatics tools
  • Gene function
  • Gene editing
  • Fluorescent proteins
  • Viral transduction
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • ProteoTuner protein control systems
  • iDimerize inducible protein interaction systems
  • Transfection reagents
  • Mammalian expression plasmids
  • Stem cell research
  • Media and supplements
  • Stem cells and stem cell-derived cells
  • Human iPS cell gene editing systems
  • Accessories
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Expression vectors & systems
  • Glycobiology
  • Antibodies and immunoprecipitation
  • SDS-PAGE & western blotting
  • Protein sequencing
  • Accessory enzymes
  • PCR
  • Most popular polymerases
  • Standard PCR
  • High-yield PCR
  • High-fidelity PCR
  • Fast PCR
  • Long-range PCR
  • GC rich PCR
  • Direct PCR
  • PCR master mixes
  • Custom business friendly and automation-ready solutions
  • Molecular diagnostic products
  • GMP-grade products
  • Application-specific PCR
  • Other PCR-related products
  • PCR thermal cyclers
  • Cloning
  • In-Fusion Cloning
  • Competent cells
  • Ligation kits
  • Mutagenesis kits
  • Ligation enzymes
  • Restriction enzymes
  • Modifying enzymes
  • X-Gal and IPTG
  • Linkers, primers, and cloning vectors
  • Agarose gel electrophoresis
  • Nucleic acid extraction
  • Nucleic acid purification
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • RNA cleanup kits
  • Viral DNA and RNA purification kits
  • Accessories and components
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Secondary antibodies
  • Antibody and ELISA accessories
  • Fluorescent protein antibodies
  • Cell biology assays
  • Extracellular vesicle isolation
  • Exosome isolation (cell culture)
  • Reporter systems
  • Apoptosis detection kits
  • Epigenetics
  • Cell biology reagents
  • RNA interference
  • Cell-culture accessories
  • Signal transduction
  • Real-time PCR
  • Real-time PCR kits
  • Reverse transcription prior to qPCR
  • Real-time PCR primer sets
  • References and standards for qPCR
  • RNA extraction and analysis for real-time qPCR
  • Application-specific qPCR
  • cDNA synthesis
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • cDNA synthesis accessories
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
  • Antibodies and ELISA
  • Cell biology assays
  • Real-time PCR
  • cDNA synthesis
  • Automation systems
  • SmartChip Real-Time PCR System introduction
  • Apollo library prep system introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • Product line overview
  • Technical notes
  • Featured kits
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Newsletters
  • Webinars
  • Citations
  • Posters
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Transfection reagents
  • Fluorescent proteins
  • Stem cell research
  • Protocols
  • Applications
  • Technical notes
  • Posters
  • Webinars
  • Videos
  • FAQs
  • Citations
  • Selection guides
  • Overview
  • Protein research
  • Capturem technology
  • Antibody purification
  • His-tag purification
  • Other tag purification
  • Phosphoprotein and glycoprotein purification
  • Mass spectrometry digestion reagents
  • Matchmaker Gold yeast two-hybrid systems
  • Expression systems
  • PCR
  • Citations
  • Selection guides
  • PCR enzyme brochure
  • Technical notes
  • PCR FAQs
  • Go green with lyophilized enzymes
  • LA PCR technology
  • Cloning
  • In-Fusion Cloning: general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and tech notes
  • Sign up to stay updated
  • Traditional molecular cloning
  • Nucleic acid purification
  • Product finder
  • Plasmid purification
  • Genomic DNA purification
  • DNA/RNA cleanup and extraction
  • Parallel DNA, RNA & protein
  • Automated DNA and RNA purification
  • RNA purification
  • Hard-to-lyse samples
  • Antibodies and ELISA
  • Osteocalcin focus
  • Cell biology assays
  • Extracellular vesicle isolation
  • Technical notes
  • FAQs
  • Citations
  • Real-time PCR
  • Product finder
  • Reaction size guidelines for qPCR
  • Real-time PCR products brochure
  • Real-time PCR tutorial videos
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Overview
  • Technical notes
  • FAQs
  • cDNA synthesis
  • Premium total and poly A+ RNA
  • SMARTer RACE 5'/3' Kit—advances in SMARTer PCR cDNA synthesis
  • Cloning antibody variable regions
  • Services & Support
  • Instrument services
  • OEM & custom enzyme manufacturing
  • Stem cell services
  • Gene and cell therapy manufacturing services
  • Customer service
  • Technical support
  • Sales
  • Shipping & delivery
  • Feedback
  • Corporate development
  • Webinars from Takara Bio
  • Vector information
  • Online tools
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip services
  • OEM & custom enzyme manufacturing
  • Services
  • Quality
  • Expertise
  • OEM enzyme FAQs
  • Custom enzyme samples
  • Exploring OEM and custom enzyme partnerships
  • Stem cell services
  • Clinical-grade stem cell services
  • Research-grade stem cell services
  • Outsourcing stem cell-based disease model development
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Corporate development
  • Partnering & OEM solutions
  • In licensing
  • Out licensing
  • Submit a licensing request
  • Webinars from Takara Bio
  • NGS: biomarkers and oncology
  • NGS: immunology
  • Stem cells
  • Real-time PCR
  • Gene function
  • Protein science
  • Vector information
  • Vector document overview
  • Vector document finder
  • Online tools
  • GoStix Plus FAQs
  • Areas of interest
  • Pathogen detection
  • Vaccine development
  • Cancer research
  • Immunotherapy research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Vaccine development
  • Characterizing the viral genome and host response
  • Identifying and cloning vaccine targets
  • Expressing and purifying vaccine targets
  • Immunizing mice and optimizing vaccine targets
  • Cancer research
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker discovery
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Preimplantation genetic testing
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • Announcements
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • Takara Bio affiliates & distributors
  • Need help?
  • Website FAQs
  • DSS Takara Bio India Pvt. Ltd : Manufacturing
  • Our partners
  • Special offers
  • New products
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • Season one
  • Season two
  • Season three
  • Our brands
  • Takara
  • Clontech
  • Cellartis
  • Events
  • Calendar
  • Conferences
  • Speak with us
  • Takara Bio affiliates & distributors
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors, by country
  • Special offers
  • RT-qPCR bundle promotion
  • GoStix Plus special offers
  • PCR samples
  • Products
  • Learning centers
  • Services & Support
  • Areas of interest
  • About