Monoclonal Anti-Human Platelet GMP-140 (P-selectin/CD62)

Clone WGA-1 (Cat.# M062) and Clone PL7-6 (Cat. # M063)

Application: Using Anti-GMP-140 Antibodies to Measure Thrombin-Mediated Platelet Activation

GMP-140 (also known as P-selectin or CD62P) is a cell adhesion molecule that is important in platelet recruitment and aggregation at wound sites. In unstimulated platelets, GMP-140 is located in the inner wall of the cell membrane. Platelet activation (through molecules such as thrombin) results in a "membrane flip flop" during which molecules on the inner wall are translocated to the outside surface of the cell.

Takara Bio offers monoclonal antibodies that recognize GMP-140 (Cat. # M062 and M063). In this experiment, these antibodies were used for flow cytometry, western blot, and a radiolabelled antibody binding assay to assess GMP-140 expression after stimulation by thrombin.

Methods

Platelet Preparation

Platelets were isolated from human fresh citrated plasma, washed, and suspended in PBS/0.1% NaN₃. Then, thrombin (0-1 units) was added to 1x10⁷ platelets in suspension, and the mixture was incubated for 5 minutes at room temperature. Paraformaldehyde (1% final) was added to fix the cells, and the reaction was allowed to proceed at room temperature for 2 minutes.

Flow Cytometry

Platelets were incubated with monoclonal anti-human platelet GMP-140 antibodies (clone PL7-6, Cat. # M063; or WGA-1, Cat. # M062) at a concentration of 1 μ g lgG / 1 \times 107 platelets at room temperature for 30 minutes. Then, the platelets were washed with PBS and treated with a FITC-labeled anti-mouse lgG secondary antibody at room temperature for 30 minutes. After staining, the cells were isolated by centrifugation and re-suspended in PBS. Fluorescence intensity was measured by flow cytometry.

Western Blotting

Protein lysates from thrombin-treated platelets were prepared using SDS to solubilize the platelets. Proteins were separated by SDS-PAGE under both reducing (+ β -mercaptoethanol) and non-reducing conditions. After electrophoresis, proteins were blotted to PVDF membrane, and the blots were incubated with each monoclonal antibody (10 μ g/ml of antibody used as primary antibody).

Radiolabelled Antibody Binding Assay

The surface expression of GMP-140 was analyzed by a radiolabelled antibody binding assay. Thrombin-stimulated platelets were incubated with anti-platelet GMP-140 antibodies (clones PL7-6 and WGA-1) labeled with ¹²⁵I. Bound and free ¹²⁵I were measured and the results were plotted (Scatchard plot analysis) to determine the KD and the number of GMP-140 binding sites/platelet.

Results

After thrombin stimulation there was an increase in fluorescence intensity in a thrombin concentration-dependent manner (Fig. 1), indicating an increase in cell surface GMP-140. In addition, GMP-140 could be detected by western blot under non-reducing conditions (Fig. 2). Finally, Scatchard plot analysis indicated that there were approximately 8000 GMP-140 sites per stimulated platelet cell (Fig. 3) and that clone WGA-1 had a stronger affinity for GMP-140.

- Continued next page -

TAKARA BIO INC. 800-662-2566 Notice to Purchaser. Your use of these products and technologies is subject to compliance with any applicable licensing requirements described on the product's web page at http://www.clontech.com/takara. It is your responsibility to review, understand and adhere to any restrictions imposed by such statements. The Takara logo is a trademark of TAKARA HOLDINGS, Kyoto, Japan. All other marks are the property of their respective owners. Certain trademarks may not be registered in all jurisdictions.

Figure 1. Fluorescence intensity of thrombin-treated platelets as measured by flow cytometry. Isolated human platelets were treated with increasing concentrations of thrombin (0, 0.1, 0.5, or 1 unit). After thrombin stimulation, platelets were stained with anti-platelet GMP-140 antibodies (clone PL7-6, Cat. # M063; or clone WGA-1, Cat. # M062) and a FITC-labeled secondary antibody. Fluorescence intensity was measured by flow cytometry and plotted as a histogram (gray trace- untreated; black trace- treated with antibody).

Figure 2. Western blot detection of GMP-140 from activated platelets. Protein lysate was prepared from thrombin-stimulated platelets, and proteins were separated by both reducing and non-reducing SDS-PAGE. GMP-140 was detected by western blot using monoclonal anti-GMP-140 primary antibodies (clones PL 7-6 or WGA-1).

- Continued next page -

Figure 3. GMP-140 antibody binding assay. Thrombin-stimulated platelets were incubated with radiolabelled (125I) GMP-140 antibodies (clones WGA-1 and PL 7-6), and the amount of bound and free 125I was measured. A Scatchard plot (y-axis, Bound/Free; x-axis, amount of labeled antibody) was used to estimate the K_D and the number of GMP-140 binding sites per platelet.

Conclusions

The anti-human platelet GMP-140 antibodies (Cat. # M062 and M063) can be used for a variety of applications. These antibodies react with activated platelets, such as those stimulated with thrombin (flow cytometry). They can also be used for detection of human GMP-140 by western blot analysis under non-reducing, non-heating conditions. Finally, the PL7-6 and WGA-1 antibody clones recognize different epitopes on the GMP-140 molecule and have different affinities for GMP-140.