Performance advances and workflow simplifications for single cell RNA-Seq and DNA-Seq
Next-generation sequencing

Breaking performance barriers
A complete portfolio for next-gen sequencing

• Sensitivity
• Reproducibility
• Reliability
• Ease of use
• Scalability
SMARTer Whole transcriptome analysis

Single-cell or ultra-low-input RNA-seq
- 1–1,000 cells; 10 pg–10 ng RNA
 - Oligo(dT) priming
 - intact cells or high-quality RNA (RIN 8–10)
 - SMART-Seq HT Kit
 - cDNA synthesis from 1–100 cells or 10 pg–1 ng total RNA
 - SMART-Seq v4 3' DE Kit
 - cDNA synthesis from 1–100 cells or 10 pg–1 ng total RNA
 - SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
 - cDNA synthesis from 1–1,000 cells or 10 pg–10 ng total RNA

Total RNA-seq
- 100 pg–1 µg RNA; random priming
 - Random priming
 - intact cells or low-quality RNA
 - SMART-Seq Stranded Kit
 - Library construction from 1–1,000 mammalian cells or 10 pg–10 ng mammalian total RNA
 - SMART-Seq v4 Ultra Low Input RNA Kit for the Fluidigm C1® System
 - cDNA synthesis from single cells
 - mRNA depletion
 - for human, mouse, or rat
 - rRNA(−) or poly A(+) RNA depleted or enriched RNA from any species
 - SMART-Seq Universal Low Input RNA Kit for sequencing
 - cDNA synthesis from 250 pg–10 ng (RIN 2–10 or DV200 >25)
 - SMART-Seq Total RNA Sample Prep Kit - Low Input Mammalian
 - Library construction from 10–100 ng (RIN 3–10)
 - SMART-Seq Total RNA Sample Prep Kit - Hi Mammalian
 - Library construction from 100 pg–10 ng
 - SMART-Seq Stranded Total RNA Sample Prep Kit - Hi Mammalian
 - Library construction from 100 ng–1 µg (RIN 3–10)
SMART-Seq Stranded RNA-Seq

- Simple workflow from 1–1,000 intact cells or isolated total RNA
- High sensitivity, as determined by number of transcripts identified
- Reproducible chemistry enables confidence in your data
- Accurate detection of coding and noncoding transcripts
Experimental overview

- Tumor Cell Dissociation
- Labeling and FACS
- SMART-Seq Library Prep
- Sequencing & Analysis
Excellent mapping statistics from cells with extremely low RNA content

Distribution of reads (% of total)

- Exonic
- Intronic
- Intergenic
- rRNA
- Mitochondria
- Unmapped/other

Genes detected (TPM >1)

CD45 (N=18) EpCAM (N=47)
Uniform gene-body coverage with the SMART-Seq Stranded Kit

Normalized read coverage

- CD45+ cell C
- CD45+ cell D
- EpCAM+ cell C
- EpCAM+ cell B

Graphs showing gene expression levels for ACTB and CD69 genes.
SMARTer DNA Sequencing

DNA sequencing

Low-input DNA-seq
- General application
 - SMARTer ThruPLEX DNA-Seq Kit
 - Library construction from 50 pg-50 ng DNA
- Specific application
 - SMARTer ThruPLEX Tag-seq Kit
 - Library construction with incorporation of unique molecular tags from 1 ng-50 ng DNA
 - SMARTer ThruPLEX Plasma-Seq Kit
 - Library construction from <1 ng-30 ng cfDNA isolated from plasma

Single-cell whole genome amplification and DNA-seq
- SMARTer PicoPLEX Gold DNA-Seq kit
 - Library construction from 1-5 mammalian cells or <15-30 pg gDNA

Epigenomic profiling
- ChIP-seq
 - SMARTer ThruPLEX DNA-Seq Kit
 - Library construction from 50 pg-80 ng ChIP DNA (double-stranded)
- Methylated DNA-seq
 - EpiXplore Meth-Seq DNA Enrichment Kit
 - Library construction from 25 ng-1 μg gDNA
 - DNA SMART ChIP-Seq kit
 - Library construction from 100 pg-10 ng ChIP DNA (single-stranded or double-stranded)
PicoPLEX Gold Single Cell DNA-Seq

- Fast, simple workflow: from cells to libraries in 3 hours, with minimal hands on time
- Best in class performance: superior reproducibility and sensitivity
- Flexible kit configuration: UDIs available for use on the NovaSeq
PicoPLEX Gold: fast, simple library prep

ONE
Add Enzyme Extraction Master Mix

TWO
Add Pre-Amplification Master Mix

THREE
Pre-amplification cleanup

FOUR
Add Amplification Master Mix

Single cell → AMPure → Amplified library → Analysis

5 min
5 min
15 min
5 min

30 min Hands-on time
High-fidelity detection of single nucleotide variants

<table>
<thead>
<tr>
<th></th>
<th>PicoPLEX WGA v2</th>
<th>Kit D</th>
<th>Kit Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of SNV position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allele frequency ≥20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicates n=2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNVs called (of 74 validated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cell</td>
<td>57</td>
<td>34</td>
<td>Failed</td>
</tr>
<tr>
<td>5 cells</td>
<td>67</td>
<td>57</td>
<td>40</td>
</tr>
<tr>
<td>False positive calls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cell</td>
<td>3</td>
<td>5</td>
<td>Failed</td>
</tr>
<tr>
<td>5 cells</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Call rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cell</td>
<td>78%</td>
<td>47%</td>
<td>Failed</td>
</tr>
<tr>
<td>5 cells</td>
<td>92%</td>
<td>78%</td>
<td>55%</td>
</tr>
<tr>
<td>Average locus dropouts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cell</td>
<td>16.2%</td>
<td>38.5%</td>
<td>Failed</td>
</tr>
<tr>
<td>5 cells</td>
<td>8.1%</td>
<td>12.8%</td>
<td>45.9%</td>
</tr>
<tr>
<td>Average allele dropouts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 cell</td>
<td>7.8%</td>
<td>25.6%</td>
<td>Failed</td>
</tr>
<tr>
<td>5 cells</td>
<td>0.0%</td>
<td>12.2%</td>
<td>71.1%</td>
</tr>
</tbody>
</table>

January, 2019

CONFIDENTIAL | Oncology Research Program
Accurate detection of segmental aneuploidies with low-pass sequencing

<table>
<thead>
<tr>
<th>Sample/Reference</th>
<th>Log2 ratio bin count</th>
<th>47.8Mb</th>
<th>TETRALOGY OF FALLOT (NA14164)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15.4Mb</td>
<td>TETRALOGY OF FALLOT (NA14164)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.5Mb</td>
<td>WOLF-HIRSCHHORN SYNDROME (NA22601)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5Mb</td>
<td>POTOCKI-SHAFFER SYNDROME (NA22624)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample/Reference</th>
<th>Log2 ratio bin count</th>
<th>25.5Mb</th>
<th>EUPLOID CELL LINE (GM12878)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25.5Mb</td>
<td>WOLF-HIRSCHHORN SYNDROME (GM22601)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.7Mb</td>
<td>ANEUPLOIDY – PARTIAL TRISOMY CHR 9 (GM05067)</td>
</tr>
</tbody>
</table>